Skip to main content

The Log—Quadratic Proximal Methodology in Convex Optimization Algorithms and Variational Inequalities

  • Chapter
Book cover Equilibrium Problems and Variational Models

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 68))

Abstract

The logarithmic-quadratic proximal map recently introduced by the authors allows for deriving several efficient algorithms in convex optimization and variational inequalities. This brief survey outlines the power and usefulness of the resulting logarithmic-quadratic methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Auslender, ”Numerical methods for nondifferentiable convex optimization”, Mathematical Programming Study, 30, 1987, 102–126.

    MathSciNet  Google Scholar 

  2. A. Auslender, R. Cominetti and M. Haddou, “Asymptotic analysis of penalty and barrier methods in convex and linear programming”, Mathematics of Operations Research, 22, 1997, 43–62.

    Article  MathSciNet  Google Scholar 

  3. A. Auslender and M. Haddou, “An interior proximal method for convex linearly constrained problems and its extension to variational inequalities”, Mathematical Programming, 71, 1995, 77–100.

    MathSciNet  Google Scholar 

  4. A. Auslender, M. Teboulle and S. Ben-Tiba,A Logarithmic-Quadratic Proximal Method for Variational Inequalities, Computational Optimization and Applications 12(1998) 31–40.

    Article  MathSciNet  Google Scholar 

  5. A. Auslender, M. Teboulle and S. Ben-Tiba, Interior Proximal and Multiplier Methods based on Second Order Homogeneous Kernels, Mathematics of Operations Research 24(1999) 645–668.

    Article  MathSciNet  Google Scholar 

  6. A. Auslender, M. Teboulle and S. Ben-Tiba, “Coupling the logarithmic-quadratic proximal method and the block nonlinear Gauss-Seidel Algorithm for linearly constrained convex minimization”, Ill-Posed Variational Problems and Regularization Techniques, Editors, M. Thera and R. Tichatschke. Lecture notes in ecomomics and Mathematical Systems. Vol. 477, 1999, Springer Verlag, 35–47.

    Google Scholar 

  7. A. Auslender and M. Teboulle, “Lagrangian Duality and Related Multiplier Methods for Variational Inequalities”, SIAM J. Optimization, 10, 2000, 1097–1115.

    Article  MathSciNet  Google Scholar 

  8. A. Auslender and M. Teboulle, “A Log-quadratic projection method for convex feasibility problems”, in D. Butanariu, Y. Censor and S. Reich Eds. Inherently parallel algorithms in fesibility and optimiztaiom and their aplications. Studies in Computational Mathematics,Vol. 8, 2001, 1–10. Elsevier, Amsterdam

    Google Scholar 

  9. A. Auslender and M. Teboulle, “Entropic proximal decomposition methods for convex programs and variational inequalities”, Mathematical Programming, In press.

    Google Scholar 

  10. A. Auslender and M. Teboulle, “An entropic proximal bundle method for nonsmooth convex minimization”, Working paper, September 2000.

    Google Scholar 

  11. H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38 (1996) 367–426.

    Article  MathSciNet  Google Scholar 

  12. A. Ben-Tal and M. Zibulevsky, “Penalty-Barrier Methods for convex programming problems”, SIAM J. Optimization, 7, 1997, 347–366.

    Article  MathSciNet  Google Scholar 

  13. D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, NY, 1982.

    Google Scholar 

  14. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods( Prentice-Hall, New Jersey, 1989 ).

    Google Scholar 

  15. R. D. Bruck, An iterative solution of a variational inequality for certain monotone operators in Hilbert space, Bulletin of the American Math. Soc., 81, 1975, 890–892. (With corrigendum, in 82, 1976, p. 353 ).

    Google Scholar 

  16. R. S. Burachik and A. N. Iusem, “A generalized proximal point algorithm for the variational inequality problem in a Hilbert space”, SIAM Journal on Optimization, 8, 1998, 197–216.

    Article  MathSciNet  Google Scholar 

  17. R. S. Burachick and B. Svaiter, “A relative error tolerance for a family of generalized proximal point methods”. To appear in Mathematics of Operations Research.

    Google Scholar 

  18. Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms 8(1994) 221–239.

    Article  MathSciNet  Google Scholar 

  19. Y. Censor, A. N. Iusem and S. A. Zenios, An interior-point method with Bregman functions for the variational inequality problem with paramonotone operators. Working paper, University of Haifa, 1994.

    Google Scholar 

  20. G. Cimmino, Calcolo appproximato per le soluzioni dei sistemi di equazioni lineari, La Ricerc Scientifica Roma 1(1938) 326–333.

    Google Scholar 

  21. G. Chen and M. Teboulle, “A proximal based decomposition method for convex minimization problems”, Mathematical Programming 64, (1994) 81–101.

    Article  MathSciNet  Google Scholar 

  22. P. L. Combettes, Hilbertian convex feasibility problem: convergence and projection methods, Applied Mathematics and Optimization, 35(1997) 311–330.

    Article  MathSciNet  Google Scholar 

  23. R. Correa and C. Lemarechal, “Convergence of some algorithm for convex programming”, Mathematical Programming, 62, 1993, 261–275.

    Article  MathSciNet  Google Scholar 

  24. M. Doljansky and M. Teboulle, ”An Interior proximal algorithm and the exponential multiplier method for semi-definite programming”, 9, 1998, 1–13.

    MathSciNet  Google Scholar 

  25. J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Mathematical Programming 55, (1992) 293–318.

    Article  MathSciNet  Google Scholar 

  26. J. Eckstein, “Non linear proximal point algorithms using Bregman functions, with applications to convex programming”, Mathematics of Operations Research, 18, 1993, 202–226.

    Article  MathSciNet  Google Scholar 

  27. J. Eckstein, Approximate iterations in Bregman-function-based proximal algorithms, RRR, 12–96, January 97, Rutgers University.

    Google Scholar 

  28. J. Eckstein and M. Ferris, “Smooth methods of multipliers for complementarity problems” Research report RRR 27–96 (revised February 1997), RUTCOR, Rutgers University, New Brunswick, NJ 08903.

    Google Scholar 

  29. P. P. B. Eggermont, “Multiplicatively iterative algorithms for convex programming”, Linear Algebra and Its Applications, 130, 1990, 2542.

    MathSciNet  Google Scholar 

  30. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems( North-Holland, Amsterdam, 1983 ).

    Google Scholar 

  31. M. Fukushima, ”A descent algorithm for nonsmooth convex programming”, Mathematical Programming, 30, 1984, 163–175.

    Article  MathSciNet  Google Scholar 

  32. M. Fukushima, “Application of the alternating direction method of multipliers to separable convex programming problems,” Computational Optimization and Applications 1, (1992) 93–111.

    Article  MathSciNet  Google Scholar 

  33. A. V. Fiacco and G. P. McCormick, “Nonlinear Programming: Sequential Unconstrained Minimization Techniques”, Classics in Applied Mathematics, SIAM, Philadelphia, 1990.

    Google Scholar 

  34. D. Gabay, “Applications of the method of multipliers to variational inequalities,” in: M. Fortin and R. Glowinski, ed., Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems( North-Holland, Amsterdam, 1983 ) pp. 299–331.

    Chapter  Google Scholar 

  35. D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,” Comp. Math. Appl.2, (1976) 17–40.

    Article  Google Scholar 

  36. M. Gaudioso and M. F. Monaco, “A bundle type approach to unconstrained minimization of convex nonsmooth functions”, Mathematical Programming, 23, 1982, 216–226.

    Article  MathSciNet  Google Scholar 

  37. R. Glowinski and P. Le Tallec, “Augmented lagrangian and operator-splitting methods in nonlinear mechanics,” in SIAM Studies in Applied Mathematics( SIAM, Philadelphia, 1989 ).

    Google Scholar 

  38. O. Güler, “On the convergence of the proximal point algorithm for convex minimization”, SIAM J. of Control and Optimization, 29, 1991, 403–419.

    Article  Google Scholar 

  39. M. R. Hestenes, “Multiplier and gradient methods”, J. Optimization Theory and Applications, 4, 1969, 303–320.

    Article  MathSciNet  Google Scholar 

  40. A. N. Iusem, B. Svaiter and M. Teboulle, “Entropy-Like proximal methods in convex programming”, Mathematics of Operations Research, 19, 1994, 790–814.

    Article  MathSciNet  Google Scholar 

  41. A. Iusem and M. Teboulle, “Convergence rate analysis of non-quadratic proximal and augmented Lagrangian methods for convex and linear programming”, Mathematics of Operations Research, 20, 1995, 657–677.

    Article  MathSciNet  Google Scholar 

  42. K. C. Kiwiel, “An aggregate subgradient method for nonsmooth convex optimization”, Mathematical Programming, 27, 1983, 320–341.

    Article  MathSciNet  Google Scholar 

  43. K. C. Kiwiel, “Proximal minimization methods with generalized Bregman functions”, SIAM J. Control and Optimization, 35, 1997, 1142–1168.

    Article  MathSciNet  Google Scholar 

  44. K. C. Kiwiel, “A bundle Bregman proximal method for nondifferentiable convex minimization”, Mathematical Programming, 85, 1999, Ser. A, 241–258..

    Article  MathSciNet  Google Scholar 

  45. M. Kabbadj, Methodes proximale entropiques, Ph.D.Thesis, Universite de Montpellier II, France, 1984.

    Google Scholar 

  46. M. Kyono and M. Fukushima, “Nonlinear proximal decomposition methods for convex programming“. Preprint, July 1999.

    Google Scholar 

  47. L. S. Lasdon, Optimization Theory for Large Systems( Macmillan, New York, 1970 ).

    MATH  Google Scholar 

  48. B. Lemaire, “The proximal algorithm”. In International Series of Numerical Mathematics (J.P. Penot, ed.) Birkhauser Verlag, Basel, 87, 1989, 73–87.

    Google Scholar 

  49. C. Lemarechal, “Bundle methods in nonsmooth optimization”, In, Nonsmooth Optimization, C. Lemarechal and R. Mifflin Eds., Pergamon Press Oxford, 1978.

    Google Scholar 

  50. P. L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,” SIAM J. Numerical Analysis16, (1979) 964–979.

    Article  MathSciNet  Google Scholar 

  51. B. Martinet, “Regularisation d’inéquations variationnelles par approximations successive”, Revue Francaise d’Automatique et Informatique Recherche Opérationnelle, 4, 1970, 154–159.

    MathSciNet  Google Scholar 

  52. J. J. Moreau, “Proximité et dualité dans un espace Hilbertien”, Bull. Soc. Math. France 93, 1965, 273–299.

    MathSciNet  Google Scholar 

  53. Y. Nesterov, A. Nemirovski, “Interior point polynomial algorithms in convex programming”, SIAM Publications, Philadelphia, PA, 1994.

    Google Scholar 

  54. R. A. Polyak, “Modified barrier functions (theory and methods)”, Mathematical Programming, 54, 1992, 177–222.

    Article  MathSciNet  Google Scholar 

  55. R. A. Polyak, “Nonlinear rescaling vs. smoothing technique in constrained optimization”. Research report, George Mason University, September 2000.

    Google Scholar 

  56. R. A. Polyak and M. Teboulle, “Nonlinear resealing and proximal-like methods in convex optimization”, Mathematical Programming, 76, (1997), 265–284.

    MathSciNet  Google Scholar 

  57. M. J. D. Powell, “A method for nonlinear constraints in minimization problems”, in Optimization, R. Fletcher Editor, Academic Press, New-York, 1969, 283–298.

    Google Scholar 

  58. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

    Google Scholar 

  59. R. T. Rockafellar, “A dual approach to solving nonlinear prpgramming problems by unconstrained minimization”, Mathematical Programming, 5, 1973, 354–373.

    Article  MathSciNet  Google Scholar 

  60. R.T. Rockafellar, “Monotone operators and the proximal point algorithm”, SIAM J. of Control and Optimization, 14, 1976, 877–898.

    Article  MathSciNet  Google Scholar 

  61. R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex programming”, Mathematics of Operations Research, 1, 1976, 97–116.

    Article  MathSciNet  Google Scholar 

  62. P. J. Silva, J. Eckstein, and C. Humes, ”Resealing and stepsize selection in proximal methods using separable generalized distances”. Rutcor Research Report, November 2000.

    Google Scholar 

  63. J. E. Spingarn, “Applications of the method of partial inverses to convex programming: decomposition,” Mathematical Programming32, (1985) 199–223.

    Article  MathSciNet  Google Scholar 

  64. M. Teboulle, “Entropic proximal mappings with application to nonlinear programming”, Mathematics of Operations Research, 17, 1992, 670–690.

    Article  MathSciNet  Google Scholar 

  65. M. Teboulle, “Convergence of Proximal-like Algorithms”, SIAM J. of Optimization, 7, 1997, 1069–1083.

    Article  MathSciNet  Google Scholar 

  66. M. Teboulle, “Lagrangian multiplier methods for convex programs”, In Encyclopedia of Optimization, Eds. Floudas and Pardalos, 2001.

    Google Scholar 

  67. P. Tseng, D. Bertsekas, “On the convergence of the exponential multiplier method for convex programming”, Mathematical Programming, 60, 1993, 1–19.

    Article  MathSciNet  Google Scholar 

  68. P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,” SIAM J. of Control and Optimization 29, (1991) 119–138.

    Article  MathSciNet  Google Scholar 

  69. P. Tseng, “Alternating projection-proximal methods for convex programming and variational inequalities,” SIAM J. Optimization 7, (1997) 951–967.

    Article  MathSciNet  Google Scholar 

  70. N. Yamashuta, C. Kanzow, T. Morimoto and M. Fukushima, “An infeasible interior proximal methods for convex programming problems with linear constraints”, Preprint 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Auslender, A., Teboulle, M. (2003). The Log—Quadratic Proximal Methodology in Convex Optimization Algorithms and Variational Inequalities. In: Daniele, P., Giannessi, F., Maugeri, A. (eds) Equilibrium Problems and Variational Models. Nonconvex Optimization and Its Applications, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0239-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0239-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7955-3

  • Online ISBN: 978-1-4613-0239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics