Skip to main content

Part of the book series: Combinatorial Optimization ((COOP,volume 13))

  • 461 Accesses

Abstract

Recognition and processing of multi-dimensional data (or set of spatially related objects) is more accurate and efficient if we take into account all interdependencies between single objects. Objects to be processed like for example multi-spectral pixels in a digitized image, are often mutually dependent (e.g., correlated) with a dependency degree related to a distance between two objects in their corresponding data space. These relations can be incorporated into a pattern recognition process through appropriate multidimensional data model. If such a model is probabilistic we can use consistent Bayesian framework for solving many pattern recognition tasks. Data models are simultaneously useful to specify natural constraints and general assumptions about the physical world and a data capturing process hence they are essential in many data modelling or analytical procedures such as classification, segmentation, discontinuity detection, restoration, enhancement and scene analysis in general. Features derived from multi-dimensional data models are information preserving in the sense that they can be used to synthesize data spaces closely resembling original measurement data space as can be illustrated on the texture modelling application in the section 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ahuja and A. Rosenfeld, Mosaic models for textures, IEEE Trans. Pattern Anal. Mach. Int. Vol.3(1981) pp. 1–11.

    Article  Google Scholar 

  2. N. Ahuja and B.J. Schachter, Pattern models, (J.Wiley, 1983 ).

    Google Scholar 

  3. J. Bennett and A. Khotanzad, Maximum likelihood estimation methods for multispectral random field image models, IEEE Trans. on Pattern Analysis and Machine IntelligenceVol. 21 No. 3 (1999) pp. 537–543.

    Article  Google Scholar 

  4. M. Barnsley, Fractals Everywhere, (Academic Press, 1988 ).

    MATH  Google Scholar 

  5. C. Bennis and A. Gagalowicz, Hierarchical texture synthesis on 3-D surfaces, in W. Hansmann, F.R.A. Hopgood, and W. Strasser (eds.) Eurographics ‘89, (1989) pp. 257–269.

    Google Scholar 

  6. C. Bennis and A. Gagalowicz, 2-D Macroscopic Texture Synthesis, Computer Graphics ForumVol. 8 (1989) pp. 291–300.

    Article  Google Scholar 

  7. J. Besag, Spatial Interaction and the Statistical Analysis of Lattice Systems, J. Royal Stat. Soc. Vol. B-36 (1974) pp. 192–236.

    MathSciNet  Google Scholar 

  8. J. Besag, On the Statistical Analysis of Dirty Pictures, J. Royal Stat. Soc. Vol. B-48 (1986) pp. 259–302.

    MATH  MathSciNet  Google Scholar 

  9. C. Bouman and B. Liu, Multiple Resolution Segmentation of Textured Images, IEEE Trans. Pattern Anal. Mach. Int. Vol. 13 (1991) pp. 99–113.

    Article  Google Scholar 

  10. R. Chellappa, Two-dimensional discrete Gaussian Markov random field models for image processing, in L.N. Kanal and A. Rosenfeld (eds.) Progress in Pattern Recognition 2, ( Elsevier, North-Holland, 1985 ).

    Google Scholar 

  11. F.S. Cohen, Markov random fields for image modelling and analysis, in U.B. Desai (eds.) Modeling and Application of Stochastic Processes, ( Kluwer Academic Publishers, Boston, 1986 ).

    Google Scholar 

  12. G.R. Cross and A.K. Jain, Markov Random Field Texture Models, IEEE Trans. Pattern Anal. Mach. Int. Vol. 5 (1983) pp. 25–39.

    Article  Google Scholar 

  13. K. Deguchi and I. Morishita, Two-dimensional auto-regressive model for the representation of random image fields, Proc. 6-th Int. Conf. on Pattern Recognition, (Munich, 1982 ) pp. 90–93.

    Google Scholar 

  14. A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, B, Vol. 39 (1977) pp. 1–38.

    MATH  MathSciNet  Google Scholar 

  15. H. Derin and A.W. Cole, Segmentation of textured images using Gibbs random fields, Comp. Graphics Image Proc. Vol. 35 (1986) pp. 72–97.

    Article  Google Scholar 

  16. H. Del-in and H. Elliot, Modeling and segmentation of noisy and textured images using Gibbs random fields, IEEE Trans. Pattern Anal. Mach. Int. Vol. 9 (1987) pp. 39–55.

    Article  Google Scholar 

  17. N. Dodd, Multispectral Texture Synthesis Using Fractal Concepts, IEEE Trans. Pattern Anal. Mach. Int., Vol. 9 (1987) pp. 703–707.

    Article  Google Scholar 

  18. Z. Fan, F.S. Cohen, and M.A. Patel, Rotated and Scaled Textured Images using Markov Random Field Models, IEEE Trans. Pattern Anal. Mach. Int. Vol. 13 (1991) pp. 191–202.

    Google Scholar 

  19. O.D. Faugeras and O.D. Garber, Algebraic reconstruction techniques for texture synthesis, Proc. 5-th Int. Conf. on Pattern Recognition, (Miami Beach, 1980 ) pp. 792–782.

    Google Scholar 

  20. K.S. Fu and S.Y. Lu, Computer generation of texture using a syntactic approach, Computer Graphic, Vol. 12 (1978) pp. 147–152.

    Google Scholar 

  21. K. Fu, Syntactic Image Modelling Using Stochastic Tree Grammars, Comp. Graphics Image Proc. Vol. 12 (1980) pp. 136–152.

    Article  Google Scholar 

  22. S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, IEEE Trans. Pattern Anal. Mach. Int., Vol. 6 (1984) pp. 721–741.

    Article  MATH  Google Scholar 

  23. B. Gidas, A renormalization Group Approach to Image Processing problems, IEEE Trans. Pattern Anal. Mach. Int., Vol.11 (1989) pp.164–180.

    Article  MATH  Google Scholar 

  24. J. Grim, On numerical evaluation of maximum likelihood estimates for finite mixtures of distributions, Kybernetika, Vol. 18 (1982) pp. 173–190.

    MATH  MathSciNet  Google Scholar 

  25. J. Grim and M. Haindl, Texture Modelling by Discrete Mixtures, accepted to Computational Statistics and Data Analysis, Elsevier (2002).

    Google Scholar 

  26. M. Haindl, Contextual Classification, Proc. Artificial intelligence application ‘80, (Prague, 1990 ).

    Google Scholar 

  27. M. Haindl, Texture Synthesis, CWI Quarterly, Vol. 4 (1991), pp. 305–331.

    MATH  Google Scholar 

  28. M. Haindl and S. Šimberová, A Multispectral Image Line Reconstruction method, in P. Johansen and S. Olsen (eds.) Theory é4 Applications of Image Analysis, ( World Scientific Publishing Co., Singapore, 1992 ).

    Google Scholar 

  29. M. Haindl and S. Šimberová, A high-resolution radiospectrograph image reconstruction method, Astronomy & Astrophysics, Vol. 115 (1996) pp. 189–193.

    Google Scholar 

  30. M. Haindl and S. Šimberová, A Scratch Removal Method, Kybernetika, Vol. 34 (1998) pp. 423–428.

    Google Scholar 

  31. M. Haindl, Texture Segmentation Using Recursive Markov Random Field Parameter Estimation, in Bjarne K. Ersboll and Peter Johansen (eds.) Proceedings of the 11th Scandinavian Conference on Image Analysis, ( DSAGM, Kangerlussuaq, 1999 ) pp. 771–776.

    Google Scholar 

  32. M. Haindl, Recursive Model-Based Image Restoration, in A. Sanfeliu, J.J. Villanueva, M. Vanrell, R. Alquezar, T. Huang, and J. Serra (eds.) Proceedings of the 15th IAPR Int. Conf. on Pattern Recognition, ( Barcelona, IEEE Press, 2000 ) Vol. III, pp. 346–349.

    Google Scholar 

  33. M. Haindl, Texture modelling, in B. Sanchez, J. M. Pineda, J. Wolf-mann, Z. Bellahse, and F. Ferri (eds.) Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, (Orlando, International Institute of Informatics and Systemics, 2000 ), Vol. VII, pp. 634–639.

    Google Scholar 

  34. M. Haindl and V. Havlíček, A multiresolution causal colour texture model, in F. J. Ferri, J. M. Inesta, A. Amin, and P. Pudil (eds.) Advances in Pattern Recognition, Lecture Notes in Computer Science 1876, ( Berlin, Springer-Verlag, 2000 ) pp. 114–122.

    Google Scholar 

  35. J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, ( Methuen, London, 1964 ).

    Book  MATH  Google Scholar 

  36. A. Jain, Advances in mathematical models for image processing, Proc. IEEE, Vol. 69 (1981) pp. 502–528.

    Article  Google Scholar 

  37. H. Kaneko and E. Yodogawa, A Markov Random Field Application to Texture Classification, Proc. IEEE Conf. Pattern Recognition and Image Processing, (Las Vegas, 1982 ).

    Google Scholar 

  38. R.L. Kashyap and R. Chellappa, Estimation and Choice of Neighbors in Spatial-Interaction Models of Images, IEEE Trans. Inf. Theory, Vol. 29 (1983) pp. 60–72.

    Article  MATH  Google Scholar 

  39. R.L. Kashyap, Analysis and Synthesis of Image Patterns by Spatial Interaction Models, in L.N. Kanal and A. Rosenfeld (eds.) Progress in Pattern Recognition 1, ( Elsevier, North-Holland, 1981 ).

    Google Scholar 

  40. R. Kindermann and J.L. Snell, Markov Random Fields and their Applications, ( American Mathematical Society, Providence, 1980 ).

    Google Scholar 

  41. S.Y. Lu and K.S. Fu, A syntactic approach to texture analysis, Comp. Graphics Image Proc. Vol. 7 (1978) pp. 303–330.

    Article  Google Scholar 

  42. B.B. Mandelbrot, The Fractal Geometry of Nature, ( Freeman, San Francisco, 1982 ).

    MATH  Google Scholar 

  43. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. Vol. 21 (1953) pp. 1087–1091.

    Article  Google Scholar 

  44. S.G. Nadabar and A.K. Jain, Parameter Estimation in Markov Random Field Contextual Models Using Geometric Models of Objects, IEEE Trans. Pattern Anal. Mach. Int., Vol. 18 (1996) pp. 326–329.

    Article  Google Scholar 

  45. S. Peleg, J.Naor, R.Hartley, and D.Avnir, Multiple resolution texture analysis and classification, IEEE Trans. Pattern Anal. Mach. Int., Vol. 6 (1984) pp. 518–523.

    Article  Google Scholar 

  46. A.P. Pentland, Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Int., Vol. 6 (1984) pp. 661–674.

    Article  Google Scholar 

  47. D.K. Pickard, A curious binary lattice process, J. Appl.ProbabilityVol. 14 (1977) pp. 717–731.

    Article  MATH  MathSciNet  Google Scholar 

  48. Ch.J. Preston, Gibbs states on countable sets, (Cambridge Univ. Press, London, 1974 ).

    Book  MATH  Google Scholar 

  49. W. Qian and D.M. Titterington, Multidimensional Markov Chain Models for Image Textures, J. Royal Stat. Soc., Vol.B-53 (1991) pp. 661–674.

    Article  Google Scholar 

  50. S. Richardson and P.J. Green, On Bayesian Analysis of Mixtures with and Unknown Number of Components, J. R. Statist. Soc., Vol. B-59 (1997) pp. 731–792.

    Article  MATH  MathSciNet  Google Scholar 

  51. S.J. Roberts, D. Husmeier, I. Rezek, and W. Penny, Bayesian Approaches to Gaussian Mixture Modeling, IEEE Trans. Pattern Anal. Mach. Int., Vol. 20 (1998) pp. 1133–1142.

    Article  Google Scholar 

  52. B.J. Schachter, A. Rosenfeld, and L.S. Davis, Random Mosaic Models for Textures, IEEE Trans. Syst. Man Cyb., Vol. 8 (1978) pp. 694–702.

    Article  Google Scholar 

  53. B.J. Schachter and N. Ahuja, Random pattern generation processing, Comp. Graphics Image Proc. Vol. 10 (1979) pp. 95–114.

    Article  Google Scholar 

  54. D. Stoyan, W.S. Kendall, and J. Mecke, Stochastic geometry and its applications, ( J.Wiley, 1989 ).

    Google Scholar 

  55. J.W. Woods, Two-Dimensional Discrete Markovian Fields, IEEE Trans. Inf. Theory, Vol. 18 (1972) pp. 232–240.

    Article  MATH  MathSciNet  Google Scholar 

  56. S.C. Zhu, X.W. Liu, and Y.N. Wu, Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a “Trichromacy” Theory of Texture, IEEE Trans. on Pattern Analysis and Machine IntelligenceVol. 22 (2000) pp. 554–569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Haindl, M. (2003). Model-Based Pattern Recognition. In: Chen, D., Cheng, X. (eds) Pattern Recognition and String Matching. Combinatorial Optimization, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0231-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0231-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7952-2

  • Online ISBN: 978-1-4613-0231-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics