Skip to main content

Structural Pattern Recognition in Graphs

  • Chapter
Pattern Recognition and String Matching

Part of the book series: Combinatorial Optimization ((COOP,volume 13))

Abstract

Most pattern recognition approaches look for patterns in data represented as independent entities described by attributes. However, the relationships between entities are as important, if not more important, to the recognition of accurate and meaningful patterns. In this chapter we describe an approach to discovering patterns in relational data represented as a graph. Our approach is based on the minimum description length (MDL) principle [28], which measures how well various patterns compress the original database. This approach is implemented in the SUBDUE system. We begin with a discussion of related work. We then describe graph-based discovery, the main discovery algorithm, and the polynomially-constrained inexact graph matching algorithm at the heart of the discovery process. Next, we describe how this technique can also be used for clustering and concept learning. We illustrate the utility of the approach by applying the clustering and concept learning techniques to DNA and WWW data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. H. Ball. Classification analysis. Technical Report SRI Project 5533, Stanford Research Institute, 1971.

    Google Scholar 

  2. J. M. Barnard. Substructure searching methods: Old and new. Journal of Chemical Information and Computing Sciences, 33: 532–538, 1993.

    Google Scholar 

  3. C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

    Google Scholar 

  4. H. Bunke and B. T. Messmer. A new algorithm for efficient subgraph matching. In G. Vernazza, A. N. Vebetsanopoulos, and C. Braccini, editors, Image Processing: Theory and Applications, pages 303–307. Elsevier Science Publishers, 1993.

    Google Scholar 

  5. R. M. Cameron-Jones and J. R. Quinlan Efficient top-down induction of logic programs SIGART Bulletin, 5 (1): 33–42, 1994.

    Article  Google Scholar 

  6. P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 6, pages 153–180. MIT Press, 1996.

    Google Scholar 

  7. D. Conklin, S. Fortier, J. Glasgow, and F. Allen. Discovery of spatial concepts in crystallographic databases. In Proceedings of the ML92 Workshop on Machine Discovery, pages 111–116, 1992.

    Google Scholar 

  8. D. Conklin and J. Glasgow. Spatial analogy and subsumption. In Proceedings of the Ninth International Conference on Machine Learning, pages 111–116, 1992.

    Google Scholar 

  9. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research, 1: 231–255, 1994.

    Google Scholar 

  10. D. J. Cook and L. B. Holder. Graph-based data mining IEEE Intelligent Systems, 15 (2): 32–41, 2000.

    Article  Google Scholar 

  11. D. J. Cook, L. B. Holder, and S. Djoko. Knowledge discovery from structural data. Journal of Intelligence and Information Sciences, 5 (3): 229–245, 1995.

    Article  Google Scholar 

  12. D. J. Cook, L. B. Holder, and S. Djoko. Scalable discovery of informative structural concepts using domain knowledge. IEEE Expert, 11 (5): 59–68, 1996.

    Article  Google Scholar 

  13. D. J. Cook, L. B. Holder, G. Galal, and R. K. Maglothin. Approaches to parallel graph-based knowledge discovery. Journal of Parallel and Distributed Computing, 61 (3): 427–446, 2001.

    Article  MATH  Google Scholar 

  14. L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical compounds. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages 30–36, 1998.

    Google Scholar 

  15. S. Dzeroski. Inductive logic programming and knowledge discovery in databases. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 5, pages 117–152. MIT Press, 1996.

    Google Scholar 

  16. J. T. Favata. Offline general handwritten word recognition using an approximate beam matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 2001.

    Google Scholar 

  17. D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2 (2): 139–172, 1987.

    Google Scholar 

  18. J. Gonzalez. Empirical and Theoretical Analysis of Relational Concept Learning Using a Graph-Based Representation. PhD thesis, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, Aug. 2001.

    Google Scholar 

  19. P. Jappy and R. Nock. Pac learning conceptual graphs. In Proceedings of the Sixth International Conference on Conceptual Structures, 1998.

    Google Scholar 

  20. R. Levinson. A self-organizing retrieval system for graphs. In Proceedings of the Fourth National Conference on Artificial Intelligence, pages 203–206, 1984.

    Google Scholar 

  21. M. Liquiere and J. Sallantin. Structural machine learning with galois lattice and graphs. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 305–313, 1998.

    Google Scholar 

  22. J. Llados, E. Marti, and J. J. Villanueva. Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (10): 1137–1143, 2001.

    Article  Google Scholar 

  23. B. Luo and E. R. Hancock. Structural graph matching using the em algorithm and singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (10): 1120–1136, 2001.

    Article  Google Scholar 

  24. B. T. Messmer and H. Bunke A new algorithm for error-tolerant sub-graph isomorphism. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5): 493–504, 1998.

    Article  Google Scholar 

  25. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286, 1995.

    Article  Google Scholar 

  26. R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (6): 628–635, 2000.

    Article  Google Scholar 

  27. L. D. Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pages 1058–1063, 1993.

    Google Scholar 

  28. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific Publishing Company, 1989.

    MATH  Google Scholar 

  29. J. Segen. Learning graph models of shape. In Proceedings of the Fifth International Conference on Machine Learning, pages 29–35, 1988.

    Google Scholar 

  30. J. Segen. Graph clustering and model learning by data compression. In Proceedings of the Seventh International Conference on Machine Learning, pages 93–101, 1990.

    Google Scholar 

  31. J. F. Sowa. Conceptual Structures: Information in Mind and Machine. Addison Wesley, 1984.

    MATH  Google Scholar 

  32. S. Su, D. J. Cook, and L. B. Holder. Applications of knowledge discovery to molecular biology: Identifying structural regularities in proteins. In Proceedings of the Pacific Symposium on Biocomputing, pages 190–201, 1999.

    Google Scholar 

  33. K. Thompson and P. Langley. Concept formation in structured domains. In D. H. Fisher and M. Pazzani, editors, Concept Formation: Knowledge and Experience in Unsupervised Learning, chapter 5. Morgan Kaufmann Publishers, 1991.

    Google Scholar 

  34. J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and K. M. Currey. An algorithm for finding the largest approximately common substructures of two trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8): 889–895, 1998.

    Article  Google Scholar 

  35. P. H. Winston. Learning structural descriptions from examples. In P. H. Winston, editor, The Psychology of Computer Vision, pages 157–210. McGraw-Hill, 1975.

    Google Scholar 

  36. P. H. Winston. Artificial Intelligence. Addison Wesley, 2nd edition, 1994.

    Google Scholar 

  37. K. Yoshida, H. Motoda, and N. Indurkhya. Unifying learning methods by colored digraphs. In Proceedings of the Learning and Knowledge Acquisition Workshop at IJCAI-93, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Holder, L., Cook, D., Gonzalez, J., Jonyer, I. (2003). Structural Pattern Recognition in Graphs. In: Chen, D., Cheng, X. (eds) Pattern Recognition and String Matching. Combinatorial Optimization, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0231-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0231-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7952-2

  • Online ISBN: 978-1-4613-0231-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics