Skip to main content

Sensitivity Analysis of Partially Deployed Slowdown Warning Mechanisms for Vehicle Platoons

  • Chapter
Recent Developments in Cooperative Control and Optimization

Part of the book series: Cooperative Systems ((COSY,volume 3))

  • 381 Accesses

Abstract

Coordinated navigation to a single perfectly known target by multiple cooperating sensor-equipped agents in a partially known static environment is investigated. Original results on the spatial distribution of the agents under an optimal policy are derived using dynamic programming and neurodynamic programming techniques. Extension of the framework to counter the curse of dimensionality via multilevel path planning is outlined. Practical implications are discussed.

Corresponding author: V. Kulkarni. Research supported in parts by the NSF Grant 689–3784, Air Force Research Laboratory Grant F33615–01-C-1850, and DoD Navy STTR Grant 689–3870.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aldhaheri and H. Khalil. Aggregation of policy iteration method for nearly decomposable Markov chains. IEEE Transactions on Automatic Control, 36 (2): 178–187, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bakshi and G. Stephanopoulos. Wave-Net: a multiresolution hierarchical neural network with localized learning. AIChE, 39 (1): 57–81, 1993.

    Article  Google Scholar 

  3. S. Bana and P. Varaiya. Space division multiple access (SDMA) for robust ad-hoc vehicle communication networks. In 4th IEEE ITSC Conference, August 2001.

    Google Scholar 

  4. A. Barto, S. Bradtke, and S. Singh. Real-time learning and control using aynchronous dynamic programming. Technical report, Department of Computer Science, University of Massachusetts, Amherst, MA, 1991.

    Google Scholar 

  5. J. Bean, J. Birge, and R. Smith. Aggregation in dynamic programming. Operations Research, 35: 215–220, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Gellman and S. Dreyfus. Functional approximation and dynamic programming. Mathematical Tables and Other Aids Corp., 13: 247–251, 1959.

    Article  Google Scholar 

  7. D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 1995.

    MATH  Google Scholar 

  8. D. Bertsekas and D. Castanon. Adaptive aggregation methods for infinite horizon dynamic programming. IEEE Transactions on Automatic Control, 34 (6): 589–598, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA, 1996.

    MATH  Google Scholar 

  10. D. Blei and L. Kaelbling. Shortest paths in a dynamic uncertain domain. In IJCAI Workshop on Adaptive Spatial Representations of Dynamic Environments, 1999.

    Google Scholar 

  11. P. Burt and E. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications, 31: 482–540, 1983.

    Article  Google Scholar 

  12. R. Cheung. Iterative methods for dynamic stochastic shortest path problems. Naval Research Logistics, 45: 769–789, 1998.

    Article  MATH  Google Scholar 

  13. A. Fax and R. Murray. Information flow and cooperative control of vehicle formations. In IFAC World Congress, 2002 (to appear).

    Google Scholar 

  14. A. Girard, J. de Souza, and J. Hedrick. An overview of emerging results in networked multi-vehicle systems. In IEEE CDC, 2001.

    Google Scholar 

  15. D. Gu, G. Pei, H. Ly, M. Gerla, and X. Hong. Hierarchical routing for multi-layer ad-hoc wireless networks UAVs. Technical report, University of California, Los Angeles, CA, 2001.

    Google Scholar 

  16. J. Hespanha, H. Kim, and S. Sastry. Multiple-agent probabilistic pursuit-evasion games. In Proc. of the IEEE Conference on Decision and Control, December 1999.

    Google Scholar 

  17. J. Hespanha and M. Prandini. Optimal pursuit under partial information. In Proc. of the 10th Mediterranean Conf. on Control and Automation, July 2002.

    Google Scholar 

  18. M. Jun, A. Chaudhry, and R. D’Andrea. The navigation of autonomous vehicles in uncertain dynamic environments: A case study. In Proc. of the IEEE Conference on Decision and Control, Dec 2002.

    Google Scholar 

  19. S. Kambhampati and L. Davis. Multiresolution path planning for mobile robots. IEEE Journal on Robotics and Automation, RA-2(3): 135–145, 1986.

    Article  Google Scholar 

  20. Bo Lincoln and Anders Rantzer. Suboptimal dynamic programming with error bounds. Proc. of the IEEE Conference on Decision and Control, 2002.

    Google Scholar 

  21. P. Marbach, O. Mihatsch, and J. Tsitsiklis. Call Admission Control and Routing in Integrated Service Networks Using Neuro-Dynamic Programming. IEEE Journal on Selected Areas in Communications, 18(2):197–208, 2000.

    Article  Google Scholar 

  22. J. Miura and Y. Shirai. Hierarchical vision-motion planning with uncertainty: Local path planning and global route selection. In Proc. 1992 IEEE International Conference on Intelligent Robotics and Systems, pages 1847–1854, 1992.

    Google Scholar 

  23. R. Morris, J. Jannotti, F. Kaashoek, and J. Li. CarNet: A scalable ad hoc wireless network system. In Proc. of the 9th ACM SIGOPS European workshop: Beyond the PC: New Challenges for the Operating System, September 2000.

    Google Scholar 

  24. J. De Mot, V. Kulkarni, and E. Feron. Spatial distribution of two-agent clusters for efficient navigation. In Proc. of IEEE Conference on Decision and Control 2003 (submitted).

    Google Scholar 

  25. J. De Mot, V. Kulkami, S. Gentry, and E. Feron. Spatial distribution results for efficient multi-agent navigation. In Proc. of IEEE Conference on Decision and Control, Dec 2002.

    Google Scholar 

  26. P. Ogren, E. Fiorelli, and N. Leonard. Formations with a mission: Stable coordination of vehicle group maneuvers. In Proc. Symposium on Mathematical Theory of Networks and Systems, August 2002.

    Google Scholar 

  27. G. Oriolo, G. Ulivi, and M. Vendittelli. Real-time map building and navigation for autonomous robots in unknown environments. In IEEE Transactions on Systems, Man and Cybernetics, Part B, volume 28–3, pages 316–333, June 1998.

    Google Scholar 

  28. D. Pai and L. Reisself. Multiresolution rough terrain motion planning. Technical report, University of British Columbia, Vancouver, B.C., 1994.

    Google Scholar 

  29. J. Peterson. Obstacle avoidance using hierarchical dynamic programming. In IEEE Southeastern Symposium on System Theory, pages 192–196, 1991.

    Google Scholar 

  30. T. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall, Upper Sadie River, NJ, 1996.

    Google Scholar 

  31. A. Schutlz, L. Parker, and F. Schneider (Ed.). Multi-Robot Systems: From Swarms to Intelligent Automata (Vol. II). Kluwer Academic Publishers, Boston, MA, 2003.

    Google Scholar 

  32. G. Shen and P. Caines. Hierarchically acclerated dynamic programming with applications to transportation networks. In Proc. of International Federation of Automatic Control, Dec 1999.

    Google Scholar 

  33. R. Steele, C. Lee, and P. Gould. GSM, cdmaOne and 3G Systems. John Wiley and Sons, New York, NY, 2001.

    Book  Google Scholar 

  34. R. Sutton. Learning to predict by the methods of temporal differences. In Machine Learning, volume 3, pages 8–44, 1988.

    Google Scholar 

  35. W. Tsai, G. Huang, and J. Antonio. Fast parallel hierarchical aggregation/disaggregation algorithm for multistage optimization problems and shortest path problems. Journal of Parallel and Distributed Computing, pages 1789–1794, 1991.

    Google Scholar 

  36. J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning, 16: 185–202, 1994.

    MATH  Google Scholar 

  37. J. Tsitsiklis and B. Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 22: 59–94, 1996.

    MATH  Google Scholar 

  38. W. Whitt. Approximations of dynamic programs–I. Mathematics of Operations Research, 3: 231–243, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Zhang and J. Baras. A new adaptive aggregation algorithm for infinite horizon dynamic programming. Technical report, Center for Satellite and Hbrid Communication Networks, College Park, MD, January 2001.

    Google Scholar 

  40. D. Zhu and J. Latombe. New heuristic algorithms for efficient hierarchical path planning IEEE Trans. on Robotics and Automation, pages 9–20, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kulkarni, V., De Mot, J., Elia, N., Feron, E., Paduano, J. (2004). Sensitivity Analysis of Partially Deployed Slowdown Warning Mechanisms for Vehicle Platoons. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Recent Developments in Cooperative Control and Optimization. Cooperative Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0219-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0219-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7947-8

  • Online ISBN: 978-1-4613-0219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics