Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 149))

Abstract

The questions of (1947) (“How are the individuals and the species put together? What determines their relative proportions and their spatial and temporal relations to each other?”) can be answered by examining flows and budgets of energy and matter at the scale of a specific vegetation band or their spatial relationships and aggregation. Both questions correspond to the objectives that (1984) gives to community ecology: “to detect the patterns of natural systems, to explain them by discerning the causal processes that underlie them and to generalise these explanations as far as possible.” Those patterns and processes determine the functioning of ecosystems and population dynamics that are closely linked by similar underlying spatial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer, S. 1990. Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA. J. Biogeogr. 17: 453–462.

    Article  Google Scholar 

  • Boughton, W.C. 1989. A review of the USDA SCS curve number method. Aust. J. Soil Res. 27:511–523.

    Article  Google Scholar 

  • Briones, O., Montaña, C., and Ezcurra, E. 1996. Competition between three Chihuahuan Desert species: evidence from plant size-distance relations and root distribution. J. Veg. Sci. 7: 453–460.

    Article  Google Scholar 

  • Chapin, F.S., III, Walker, B.H., Hobbs, R.J., Hooper, D.U., Lawton, J.H., Sala, O.E., and Tilman, D. 1997. Biotic control over the functioning of ecosystems. Science 277: 500–503.

    Article  CAS  Google Scholar 

  • Cornet, A., Delhoume, J.P., and Montaña, C. 1988. Dynamics of striped vegetation patterns and water balance in the Chihuahan Desert. In Diversity and pattern in plant communities, eds. H.J. During, M.J.A. Werger, and J.H. Willens, pp. 221–231. The Hague: SPB Academic Publishing.

    Google Scholar 

  • Cornet, A.F., Montana, C., Delhoume, J.P., and López-Portillo, J. 1992. Water flows and the dynamics of desert vegetation stripes. In Landscape boundaries, consequences for biotic diversity and ecological flows, eds. A.J. Hansen and F. Di Castri, pp. 327–345. Ecological studies 92. New York: Springer Verlag.

    Google Scholar 

  • Cunningham, G.L., Balding, F.R., and Syvertsen, J.R 1974. A net CO2 exchange model for C4 grasses. Photosynthetica 8: 28–33.

    CAS  Google Scholar 

  • De Angelis, D.L., and Waterhouse, J.C. 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monog. 57: 1–21.

    Article  Google Scholar 

  • Delcourt, H.R., Delcourt, P.A., and Webb, T. 1983. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat. Sci. Rev. 1: 153–175.

    Article  Google Scholar 

  • Dregne, H.E. 1983. Desertification of arid lands, advances in desert and arid land technology and development, vol. 3. London: Harwood Academic Publishers.

    Google Scholar 

  • Dunkerley, D.L. 1997. Banded vegetation: survival under drought and grazing pressure based on a simple cellular automaton model. J. Arid Environ. 35: 419–428.

    Article  Google Scholar 

  • Feddes, R.A., Kowalik, P.J., and Zaradny, H. 1978. Simulation of field water use and crop yield. Simulation Monograph. Wageningen, The Netherlands: Pudoc.

    Google Scholar 

  • Greene, R.S.B. 1992. Soil physical properties of three geomorphic zones in a semi-arid mulga woodland. Aust. J. Soil Res. 30: 55–69.

    Article  Google Scholar 

  • Greig-Smith, P. 1983. Quantitative plant ecology, 3rd ed. Studies in ecology 9. Berkeley: University of California Press.

    Google Scholar 

  • Hansen, A.J., and Di Castri, R, eds. 1992. Landscape boundaries. Consequences for biotic diversity and ecological flows. Ecological studies 92. New York: Springer Verlag.

    Google Scholar 

  • Hattersley, P.W. 1992. C4 photosynthetic pathway variation in grasses (Poacea): its significance for arid and semi-arid lands. In Desertified grasslands. Their biology and management, ed. G. Chapman, pp. 181–212. London: Academic Press.

    Google Scholar 

  • Hemming, C.F. 1965. Vegetation arcs in Somaliland. J. Ecol. 53: 57–68.

    Article  Google Scholar 

  • Hodgkinson, K.C., and Freudenberger, D.O. 1997. Production pulses and flow-ons in range-land landscapes. In Landscape ecology, function and management: principles from Australia’s rangelands, eds. J. Ludwig, D. Tongway, D. Freudenberger, J. Noble, and K. Hodgkinson, pp. 23–34. Melbourne: CSIRO Publishing.

    Google Scholar 

  • Kareiva, P. 1985. Finding and losing host plants by Phyllotreta: patch size and surrounding habitat. Ecology 66: 1809–1816.

    Article  Google Scholar 

  • Kolasa, J., and Pickett, S.T.A., eds. 1991. Ecological heterogeneity. Ecological studies 86. New York: Springer-Verlag.

    Google Scholar 

  • Kotliar, N.B., and Wiens, J.A. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59: 253–260.

    Article  Google Scholar 

  • Ludwig, J.A., and Marsden, S.G. 1995. Modelling the impacts of climate change and degradation on semi-arid landscape systems. In Proceedings, international congress on modelling and simulation, vol. 2, Air pollution and climate, eds. P. Binning, H. Bridgman, and B. Williams, pp. 251–254. Canberra: Modelling and Simulation Society of Australia.

    Google Scholar 

  • Ludwig, J.A., and Tongway, D.J. 1995. Spatial organisation of landscapes and its function in semi-arid woodlands, Australia. Landscape Ecol. 10: 51–63.

    Article  Google Scholar 

  • Ludwig, J.A., and Tongway, D.J. 1996. Rehabilitation of semi-arid landscapes in Australia. II. Restoring vegetation patches. Rest. Ecol. 4: 398–406.

    Article  Google Scholar 

  • Ludwig, J.A., Sinclair, R.E., and Noble, LR. 1992. Embedding a rangeland simulation model within a decision support system. Math. Comp. Simul. 33: 373–378.

    Article  Google Scholar 

  • Ludwig, J.A., Tongway, D.J., and Marsden, S.G. 1994. A flow-filter model for simulating the conservation of limited resources in spatially heterogeneous, semi-arid landscapes. Pac. Conserv. Biol. 1: 209–213.

    Google Scholar 

  • Ludwig, J.A., Tongway, D.J., and Marsden, S.G., 1999. Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena 37: 257–273.

    Article  Google Scholar 

  • Mabbutt, J.A. 1978. Desertification in Australia. Report 54. Kingsford, Australia: Water Research Foundation of Australia.

    Google Scholar 

  • Mabbutt, J.A., and Fanning, P.C. 1987. Vegetation banding in arid Western Australia. J. Arid Environ. 12: 41–59.

    Google Scholar 

  • Makridakis, S., and Wheelwright, S.C. 1978. Interactive forecasting: univariate and multivariate methods. Oakland, CA: Holden-Day.

    Google Scholar 

  • Manning, S.J., and Barbour, M.G. 1988. Root systems, spatial patterns, and competition for soil moisture between two desert subshrubs. Am. J. Bot. 75: 885–893.

    Article  Google Scholar 

  • Mauchamp, A., Montana, C., Lepart, J., and Rambal, S. 1993. Ecotone dependent recruitment of a desert shrub (Flourensia cernud) in vegetation stripes. Oikos 68: 107–116.

    Article  Google Scholar 

  • Mauchamp, A., Rambal, S., and Lepart, J. 1994. Simulating the dynamics of a vegetation mosaic: a spatialized functional model. Ecol. Model. 71: 107–130.

    Article  Google Scholar 

  • Moloney, K.A., Levin, S.A., Chiariello, N.R., and Buttel, L. 1992. Pattern and scale in a serpentine grassland. Theor. Pop. Biol. 41:257–276.

    Article  Google Scholar 

  • Montaña, C. 1992. The colonization of bare areas in two-phase mosaics of an arid ecosystem. J. Ecol. 80: 315–327.

    Article  Google Scholar 

  • Mougin, E., Lo Seen, D., Rambal, S., Gaston, A., and Hiernaux, P. 1995. A regional Sahe-lian grassland model to be coupled with satellite multispectral data. 1. Description and validation. Remote Sens. Environ. 52: 181–193.

    Article  Google Scholar 

  • Muchow, R.C., and Bellamy, J.A., eds. 1991. Climatic risk in crop production: models and management for the semiarid tropics and subtropics. Wallingford, England: CAB International.

    Google Scholar 

  • Nicholls, N. 1991. The El Nino southern oscillation and Australian vegetation. Vegetatio 91:23–36.

    Article  Google Scholar 

  • Nobel, P.S. 1980. Water vapor conductance and CO2 uptake for leaves of a C4 desert grass, Hilaria rigida. Ecology 6: 252–258.

    Article  Google Scholar 

  • Noy-Meir, I. 1981. Spatial effects in modelling of arid ecosystems. In arid-land ecosystems: structure, functioning and management, vol. 2, eds. D.W. Goodall and R.A. Perry, pp. 411–432. London: Cambridge University Press.

    Google Scholar 

  • Peterjohn, W.T., and Correll, D.L. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.

    Article  CAS  Google Scholar 

  • Pickett, S.T.A., Kolasa, J., Armesto, J.J., and Collins, S.L. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129–136.

    Article  Google Scholar 

  • Rambal, S., and Cornet, A. 1982. Simulation de l’utilisation de l’eau et de la production végétale d’une phytocénose Sahélienne du Sénégal. Acta Oecol. Oecol. Plant. 3: 381–397.

    Google Scholar 

  • Risser, P.G. 1987. Landscape ecology: state of the art. In Landscape heterogeneity and disturbance, ed. M.G. Turner, pp. 3–14. Ecological studies series. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ritchie, J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8: 1204–1212.

    Article  Google Scholar 

  • Saunders, D.A., Hopkins, A.J.M., and How, R.A., eds. 1990. Australian ecosystems: 200 years of utilization, degradation and reconstruction. Sydney: Surrey Beatty and Sons.

    Google Scholar 

  • Schlesinger, W.H., and Jones, C.S. 1984. The comparative importance of overland runoff and mean annual rainfall to shrub communities of the Mojave Desert. Bot. Gaz. 145: 116–124.

    Article  Google Scholar 

  • Schlesinger, W.H., Fonteyn, P.J., and Reiners, W.A. 1989. Effects of overland flows on plant relations, erosion, and soil water percolation on a Mojave Desert landscape. Soil Sci. Soc. Am. J. 53: 1567–1572.

    Article  Google Scholar 

  • Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.F., Jarrell, W.M., Virginia, R.A., and Whitford, W.G. 1990. Biological feedbacks in global desertification. Science 247: 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Solbreck, C., and Sillen-Tullberg, B. 1986. The role of variable weather for the dynamics of a seed-seed predator system. Oecologia 41(1): 59–62.

    Article  Google Scholar 

  • Tongway, D.J., and Ludwig, J.A. 1990. Vegetation and soil patterning in semi-arid mulga lands of eastern Australia. Aust. J. Ecol. 15: 23–34.

    Article  Google Scholar 

  • Tongway, D.J., and Ludwig, J.A. 1996. Rehabilitation of semi-arid landscapes in Australia. 1. Restoring productive soil patches. Rest. Ecol. 4: 388–397.

    Article  Google Scholar 

  • Tongway, D.J., and Ludwig, J.A. 1997a. The conservation of water and nutrients within landscape, Chapter 2. In Landscape Ecology, Function and Management: Principles from Australia’s Rangelands, eds J. Ludwig, D. Tongway, D. Freudenberger, J. Noble and K. Hodgkinson, pp. 13–22. Melbourne: CSIRO Publishing.

    Google Scholar 

  • Tongway, D.J., and Ludwig, J.A. 1997b. The nature of landscape dysfunction in rangelands. In Landscape ecology, function and management: principles from Australia’s range-lands, eds. J. Ludwig, D. Tongway, D. Freudenberger, J. Noble, and K. Hodgkinson, pp. 49–61. Melbourne: CSIRO Publishing.

    Google Scholar 

  • Turner, S.J., O’Neill, R.V., Conley, W., Conley, M.R., and Humphries, H.C. 1991. Pattern and scale statistics for landscape ecology. In Quantitative methods in landscape ecology. Ecological studies 82, eds. M.G. Turner and R.H. Gardner, pp. 17–49. New York: Springer-Verlag.

    Google Scholar 

  • Urban, D.L., O’Neill, R.V., and Shugart, H.H. 1987. Landscape ecology. A hierarchical perspective can help scientists understand spatial patterns. Bioscience 37: 119–127.

    Article  Google Scholar 

  • Walker, B.H., and Langridge, J.L. 1996. Modelling plant and soil water dynamics in semi-arid ecosystems with limited site data. Ecol. Model. 87: 153–167.

    Article  Google Scholar 

  • Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Article  Google Scholar 

  • Wiens, J.A. 1984. On understanding a non-equilibrium world: myth and reality in community patterns and processes. In Ecological communities: conceptual issues and the evidence, eds. D.R Strong, D. Simberloff, L.G. Abele, and A.B. Thistle, pp. 439–457. Princeton: Princeton University Press.

    Google Scholar 

  • Wiens, J.A., Crawford, C.S., and Gosz, JR. 1985. Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45: 421–427.

    Article  Google Scholar 

  • Wiens, J.A., Addicot, J.F., Case, T.J., and Diamond, J. 1986. Overview: the importance of spatial and temporal scale in ecological investigations. In Community ecology, eds. T.J. Case, J. Diamond, J. Roughgarden, and T. Schoener, pp. 145–153. New York: Harper and Row.

    Google Scholar 

  • Wierenga, P.J., Hendrickx, J.M.H., Nash, M.H., Ludwig, J., and Daugherty, L.A. 1987. Variation of soil and vegetation with distance along a transect in the Chihuahuan desert. J. Arid Environ. 13: 53–63.

    Google Scholar 

  • Yair, A., and Danin, A. 1980. Spatial variations in vegetation as related to the soil moisture regime over an arid limestone hillside, northern Negev, Israel. Oecologia 47: 83–88.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mauchamp, A., Rambal, S., Ludwig, J.A., Tongway, D.J. (2001). Multiscale Modeling of Vegetation Bands. In: Tongway, D.J., Valentin, C., Seghieri, J. (eds) Banded Vegetation Patterning in Arid and Semiarid Environments. Ecological Studies, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0207-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0207-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6559-7

  • Online ISBN: 978-1-4613-0207-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics