Vegetation Dynamics: Recruitment and Regeneration in Two-Phase Mosaics

  • Carlos Montaña
  • Josiane Seghieri
  • Antoine Cornet
Part of the Ecological Studies book series (ECOLSTUD, volume 149)


Banded landscapes are characterized by bands of dense perennial vegetation oriented parallel to the contour, separated by bare soil (Figures 1.1, 1.10, 1.12, this volume). They are widely distributed globally and have been studied in arid and semiarid climates of Sahelian Africa and the Middle East (White 1971; Wickens and Collier 1971), South Africa (van der Meulen and Morris 1979), Australia (Mabbutt and Fanning 1987; Tongway and Ludwig 1990), and North America (Cornet et al. 1992). (1971) defined the common characteristics apparently necessary for the existence of a banded vegetation spatial structure. These characteristics are now well known and include a semiarid climate and rainfall runoff as sheet-flow on gently inclined surfaces (chapter 1, this volume). Commonly, the band and interband zones have a similar soil type and texture but not always. For example, some banded landscapes are located on soils with swell/shrink gilgai patterns and dynamics (Dunkerley and Brown 1995; Macdonald, Melville, and White 1999). The most common vegetation association in the bands is a mixture of grass and shrubs and/or trees (Slatyer 1961; Montaña, López-Portillo, and Mauchamp 1990; Seghieri et al. 1997) but can be dominated by grass (Worral 1959), trees alone (Worral 1960), or chenopod shrubs (Macdonald, Melville, and White 1999).


Perennial Grass Soil Seed Bank Vegetation Dynamics Bare Area Desert Ecosystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, V.J., and Hodgkinson, K.C. 1997. Grass-mediated capture of resource flows and the maintenance of banded mulga in a semi-arid woodland. Aust. J. Bot. 45: 331–342.CrossRefGoogle Scholar
  2. Boaler, S.B., and Hodge, C.A.H. 1964. Observations on vegetation arcs in the northern region Somali Republic. J. Ecol. 52: 511–544.CrossRefGoogle Scholar
  3. Boudet, G. 1972. Desertification de l’Afrique tropicale seche. Adansonia Ser. 2 12(4): 505–524Google Scholar
  4. Boyd, S.R., and Brum, G.D. 1983. Postdispersal reproductive biology of a Mojave Desert population of Larrea tridentata (Zygophyllaceae). Am. Midi. Nat. 110: 25–36.CrossRefGoogle Scholar
  5. Bronstein, J. 1994. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9(6): 214–217.PubMedCrossRefGoogle Scholar
  6. Brown, J.R., and Archer, S. 1990. Water relations of a perennial grass and seedling vs adult woody plants in a subtropical savanna, Texas. Oikos 57: 366–374.CrossRefGoogle Scholar
  7. Bush, J.K., and van Auken, O.W. 1990. Growth and survival of Prosopis glandulosa seedlings associated with shade and herbaceous competition. Botan. Gaz. 151(2): 234–239.CrossRefGoogle Scholar
  8. Callaway, R.M. 1995. Positive interactions among plants. Botan. Rev. 61: 306–349.CrossRefGoogle Scholar
  9. Chambers, J.E., and MacMahon, J.A. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed ecosystems. Annu. Rev. Ecol. Syst. 25: 263–292.CrossRefGoogle Scholar
  10. Cisse, S. 1981. Sedentarizations of nomadic pastoralists and “pastorization” of cultivators in Mali. In The future of pastoral people, ed. D. Aronson, pp. 318–324. Ottawa, Ontario, Canada: CDRI.Google Scholar
  11. Cornet, A., Montaña, C., Delhoume, J.P., and López-Portillo, J. 1992. Water flows and the dynamics of desert vegetation stripes. In Landscape boundaries: consequences for biotic diversity and ecological flows, eds. A. Hansen and F. Di Castri, pp. 327–345. Ecological studies 92. New York: Springer-Verlag.Google Scholar
  12. Couteron, P., Mahamane, A., and Ouedraogo, P. 1996. Analyse de la structure de peuplements ligneux dans un fourré tigré au Nord-Yatenga (Burkina Faso): état actuel et conséquences évolutives. Ann. Sci. Forest. 53: 867–884.CrossRefGoogle Scholar
  13. Couteron, P., Mahamane, A., Ouedraogo, P., and Seghieri, J. 2000. Differences between banded thickets (tiger bush) at two sites in West Africa. J. Veg. Sci. 11: 321–328.CrossRefGoogle Scholar
  14. Crisp, Michael D. 1978. Demography and survival under grazing of three Australian semi-desert shrubs. Oikos 30: 520–528.CrossRefGoogle Scholar
  15. Dunkerley, D.L. 1997a. Banded vegetation: development under uniform rainfall from a simple cellular automation model. Plant Ecol. 129: 103–111.CrossRefGoogle Scholar
  16. Dunkerley, D.L. 1997b. Banded vegetation: survival under drought and grazing pressure based on a simple cellular automaton model. J. Arid Environ. 35: 419–428.CrossRefGoogle Scholar
  17. Dunkerley, S.L., and Brown, K.J. 1995. Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. J. Arid Environ. 3: 41–55.CrossRefGoogle Scholar
  18. Ellner, S., and Shmida. A. 1981. Why are adaptations for long-range dispersal rare in desert plants? Oecologica 51: 133–144.CrossRefGoogle Scholar
  19. Galle, S., Seghieri, J., and Mounkaïla, H. 1997. Fonctionnement hydrologique et biologique à l’échelle locale. Cas d’une brousse tigrée au Niger. In Fonctionnement et gestion des écosystèmes contractés sahéliens, eds. J.M. d’Herbès, J.M.K. Ambouta, and R. Peltier, pp. 105–118. Paris: John Libbey Eurotext.Google Scholar
  20. Galle, S., Ehrmann, M., and Peugeot, C. 1999. Water balance in a banded vegetation pattern. The case study of tiger bush in western Niger. Catena 37: 197–216.CrossRefGoogle Scholar
  21. Green, D.S. 1983. The efficacy or dispersal in relation to safe site density. Oecologia 56: 356–358.CrossRefGoogle Scholar
  22. Greig-Smith, P. 1979. Pattern in vegetation. J. Ecol. 67: 755–779.CrossRefGoogle Scholar
  23. Grubb, P.J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.CrossRefGoogle Scholar
  24. Gurevitch, J., and Collins, S.L. 1994. Experimental manipulation of natural plant communities. Trends Ecol. Evol. 9(3): 94–98.PubMedCrossRefGoogle Scholar
  25. Harper, J.L. 1977. Population biology of plants. London: Academic Press.Google Scholar
  26. Harper, J.L., Clatworthy, J.N., McNaughton, I.H., and Sagar, G.R. 1961. The evolution and ecology of closely related species living in the same area. Evolution 15: 209–227.CrossRefGoogle Scholar
  27. Harper, J.L., Williams, J.T., and Sagar, G.R. 1965. The behaviour of seeds in soil. I. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. J. Ecol. 53: 273–286.CrossRefGoogle Scholar
  28. Howe, H.F., and Smallwood, J. 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13: 201–228.CrossRefGoogle Scholar
  29. Kemp, PR. 1989. Seed banks and vegetation processes in deserts. In Ecology of soil seed banks, eds. M.A. Leek, V.T. Parker, and R.L. Simpson pp. 257–282. New York: Academic.Google Scholar
  30. Lejeune, O., Couteron, P., and Lefever, R. 1999. Short range co-operativity competing with long range inhibition explains vegetation patterns. Acta Oecol. 20: 171–184.CrossRefGoogle Scholar
  31. López-Portillo, J., and Montaña, C. 1999. Spatial distribution of Prosopis glandulosa var. torreyana in vegetation stripes of the southern Chihuahuan Desert. Acta Oecol. 20: 197–208.CrossRefGoogle Scholar
  32. López-Portillo, J., Montaña, C., and Ezcurra, E. 1996. Stem demography of Prosopis glandulosa var. torreyana in vegetation arcs and associated bare areas. J. Veg. Sci. 7: 901–910.CrossRefGoogle Scholar
  33. Ludwig, J.A., Tongway, D.J., and Marsden, S.G. 1994. A flow-filter model for simulating the conservation of limited resources in spatially heterogeneous, semi-arid landscapes. Pac. Conserv. Biol. 1: 209–213.Google Scholar
  34. Ludwig, J., Tongway, D., Freudenberger, D., Noble, J., and Hodgkinson, K., eds. 1997. Landscape ecology, function and management: principles from Australia’s rangelands. Melbourne: CSIRO Publishing.Google Scholar
  35. Mabbutt, J.A., and Fanning, PC. 1987. Vegetation banding in arid Western Australia. J. Arid Environ. 12: 41–59.Google Scholar
  36. Macdonald, B.C.T., Melville, M.D., and White, I. 1999. The distribution of soluble cations within chenopod-patterned ground, arid western New South Wales, Australia. Catena 37: 89–105.CrossRefGoogle Scholar
  37. Mauchamp, A. 1992. L’hétérogénéité spatiale, sa dynamique et ses implications dans une mosaique de végétation en zone aride. Doctoral thesis. Montpellier: USTL-Montpellier II University.Google Scholar
  38. Mauchamp, A., Montaña, C, Lepart, J., and Rambal, S. 1993. Ecotone dependent recruitment of a desert shrub, Flourensia cernua, in vegetation stripes. Oikos 68: 107–116.CrossRefGoogle Scholar
  39. Mauchamp, A., Rambal, S., and Lepart, J. 1994. Simulating the dynamics of a vegetation mosaic: a spatialized functional model. Ecol. Model. 71: 107–130.CrossRefGoogle Scholar
  40. May, R.M. (1981) Patterns in multi-species communities. In Theoretical ecology, ed. R.M. May, pp. 197–227. Oxford: Blackwell Scientific Publications.Google Scholar
  41. Montaña, C. 1992. The colonization of bare areas in two-phase mosaics of an arid ecosystem. J. Ecol. 80: 315–327.CrossRefGoogle Scholar
  42. Montaña, C, López-Portillo, J., and Mauchamp, A. 1990. The response of two woody species to the conditions created by a shifting ecotone in an arid environment. J. Ecol. 78: 789–798.CrossRefGoogle Scholar
  43. Montaña, C, Cavagnaro, B., and Briones, O. 1995. Soil water use by coexisting shrubs and grasses in the southern Chihuahuan Desert. J. Arid Environ. 31: 1–13.CrossRefGoogle Scholar
  44. Nelson, J.F., and Chew, R.M. 1977. Factors affecting seed reserves in the soil of a Mojave Desert ecosystem, Rock Valley, Nye County, Nevada. Am. Mid. Natur. 97: 300–320.CrossRefGoogle Scholar
  45. Niering, W.A., Whittaker, R.H., and Lowe, C.H. 1963. The saguaro: a population in relation to environment. Science 142: 15–23.PubMedCrossRefGoogle Scholar
  46. Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Ann. Rev. Ecol. Syst. 4:25–51.CrossRefGoogle Scholar
  47. Noy-Meir, I. 1979/1980. Structure and function of desert ecosystems. Israel J. Bot. 28: 1–19.Google Scholar
  48. Noy-Meir, I. 1985. Desert ecosystems structure and function. In Hot deserts and arid shrublands. Ecosystems of the world 12A. eds. M. Evenari, I. Noy-Meir, and D.W. Goodall, pp. 93–102. Amsterdam: Elsevier.Google Scholar
  49. Pulliam, H.R. 1988. Sources, sinks, and population regulation. Am. Natur. 132: 652–661.CrossRefGoogle Scholar
  50. Reichman, O.J. 1984. Spatial and temporal variation of seed distributions in Sonoran Desert soils. J. Biogeogr. 11: 1–11.CrossRefGoogle Scholar
  51. Robinson, G.R., Holt, R.D., Gaines, M.S., Hamburg, S.P., Johnson, M.L., Fitch, H.S., and Martinko, E.A. 1992. Diverse and contrasting effects of habitat fragmentation. Science 257: 524–526.PubMedCrossRefGoogle Scholar
  52. Schaal, B.A. 1980. Measurement of gene flow in Lupinus texensis. Nature 284: 450–451.CrossRefGoogle Scholar
  53. Seghieri, J., and Galle, S. 1999. Run-on contribution to a Sahelian two-phase mosaic system: soil water regime and vegetation life cycles. Acta Oecol. 20: 209–217.CrossRefGoogle Scholar
  54. Seghieri, J., Galle, S., Rajot, J.L., and Ehrmann, M. 1997. Relationships between the soil moisture regime and the growth of the herbaceous plants in a natural vegetation mosaic in Niger. J. Arid Environ. 36: 87–102.CrossRefGoogle Scholar
  55. Shmida, A, Evenari, M., and Noy-Meir, I. 1985. Hot desert ecosystems: an integrated view. In Hot deserts and arid shrublands, vol. 12B, eds. M. Evenari, I. Noy-Meir, and D.W. Goodall, pp. 379–387. Amsterdam: Elsevier.Google Scholar
  56. Slatyer, R.O. 1961. Methodology of a water balance study conducted on a desert woodland Acacia anuera F. Muell.) community in central Australia. UNESCO Arid Zone Res. 16: 15–26.Google Scholar
  57. Thiéry, J., d’Herbès, J.M., and Valentin, C. 1995. A model simulating the genesis of banding patterns in Niger. J. Ecol. 83: 497–507.CrossRefGoogle Scholar
  58. Tongway, D.J., and Ludwig, J.A. 1990. Vegetation and soil patterning in semi-arid mulga lands of eastern Australia. Aust. J. Ecol. 15: 23–34.CrossRefGoogle Scholar
  59. Urban, D.L., O’Neill, R.V, and Shugart, H.H., Jr. 1987. Landscape ecology. BioScience 37: 119–127.CrossRefGoogle Scholar
  60. van der Meulen, F, and Morris, J.W. 1979. Striped vegetation patterns in a Transvaal savanna (South Africa). Geo-Eco-Trop. 3: 253–266.Google Scholar
  61. White, L.P. 1970. Brousse tigrée patterns in southern Niger. J. Ecol. 55: 549–553.Google Scholar
  62. White, L.R 1971. Vegetation stripes on sheet wash surfaces. J. Ecol. 59: 615–622.CrossRefGoogle Scholar
  63. Wickens, G.E., and Collier, F.W. 1971. Some vegetation patterns in the Republic of Sudan. Geoderma 6: 43–59.CrossRefGoogle Scholar
  64. Worrall, G.A. 1959. The Butana grass patterns. J. Soil Sci. 10: 34–53.CrossRefGoogle Scholar
  65. Worrall, G.A. 1960. Patchiness in vegetation in the northern Sudan. J. Ecol. 48: 107–115.CrossRefGoogle Scholar
  66. Wu, X.B., Thurow, T.L., and Whisenant, S.G. 2000. Fragmentation and functional change of tiger bush landscapes in Niger. J. Ecol. 88: 790–800.CrossRefGoogle Scholar
  67. Yarranton, G.A., and Morrison, R.G. 1974. Spatial dynamics of a primary succession: nucleation. J. Ecol. 62: 417–428.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Carlos Montaña
  • Josiane Seghieri
  • Antoine Cornet

There are no affiliations available

Personalised recommendations