Runoff and Erosion Processes

  • Richard S. B. Greene
  • Christian Valentin
  • Michel Esteves
Part of the Ecological Studies book series (ECOLSTUD, volume 149)


Banded vegetation patterning consisting of densely vegetated bands alternating regularly with relatively bare areas of soil is common in many semiarid and arid regions of the world. These areas occur as either woodlands or shrublands in the continents of Australia, Africa, Europe, and North America (chapter 2, this volume). These two-phase mosaics form some of the most important grazing lands in the world. The bands are important areas for primary production, especially on the upward slope from the band. The trees or shrubs in the bands are also important for fuel, as well as providing fodder during droughts.


Infiltration Rate Bare Area Runoff Coefficient Surface Crust Runoff Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambouta, K. 1984. Contribution à l’édaphologie de la brousse tigrée de l’Ouest Nigérien. Docteur-ingénieur thesis. Nancy: Nancy 1 University.Google Scholar
  2. Audry, P., and Rossetti, C. 1962. Observations sur les sols et la végétation en Mauritanie du sud-est et dur la bordure adjancente du Mali (1959–1961). Rome: FAO, 24067/F/l.Google Scholar
  3. Bergkamp, G., Cerdà, A., and Imeson, A.C. 1999. Magnitude-frequency analysis of water redistribution along a climate gradient in Spain. Catena 37: 129–146.CrossRefGoogle Scholar
  4. Blackburn, W. 1975. Factors affecting infiltration and sediment production of semi-arid rangelands in Nevada. Water Resour. Res. 11: 929–937.CrossRefGoogle Scholar
  5. Brewer, R., and Sleeman, J.R. 1988. Soil structure and fabric. Melbourne: CSIRO.Google Scholar
  6. Burrell, J.R 1974. Vegetation of Fowlers Gap station. In Lands of the Fowlers Gap station New South Wales. Research series 3, pp. 175–195. Sydney: Fowlers Gap Arid Zone Research Station, University of New South Wales.Google Scholar
  7. Cammeraat, L.H., and Imeson, A.C. 1999. The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain. Catena 37: 107–127.CrossRefGoogle Scholar
  8. Casenave, A., and Valentin, C. 1989. Les états de surface de la zone Sahélienne: influence sur l’infiltration. Paris: Editions de l’ORSTOM.Google Scholar
  9. Casenave, A., and Valentin, C. 1992. A runoff capability classification system based on surface features criteria in semi-arid areas of West Africa. J. Hydrol. 130: 231–249.CrossRefGoogle Scholar
  10. Chappell, A. 1995. Geostatistical mapping and ordination analyses of 137Cs-derived net soil flux in south-west Niger. Unpublished doctoral thesis. London: University of London.Google Scholar
  11. Chappell, A., Valentin, C, Warren, A., Noon, P., Charlton, M., and d’Herbès, J.M. 1999. Testing the validity of upslope migration in banded vegetation from south-west Niger. Catena 37: 217–229.CrossRefGoogle Scholar
  12. Clayton, W.D. 1966. Vegetation ripples near Gummi, Nigeria. J. Ecol. 54: 415–417.CrossRefGoogle Scholar
  13. Clayton, W.D. 1969. The vegetation of Katsina province, Nigeria. J. Ecol. 57: 445–451.Google Scholar
  14. Clos-Arceduc, M. 1956. Etude sur photographies aériennes d’une formation végétale sahélienne: la brousse tigrée. Bull. IFAN Ser. A 7(3): 677–684.Google Scholar
  15. Cornet, A.F., Delhoume, J.P., and Montaña, C. 1988. Dynamics of striped vegetation patterns and water balance in the Chihuahuan Desert. In Diversity and pattern in land communities, eds. J.J. During, M.J.A. Werger, and J.H. Willems, pp. 221–231. The Hague: SPB Academic Publishing.Google Scholar
  16. Delhoume, J.P. 1996. Fonctionnement hydro-pédologique d’une toposéquence de sols en milieu aride (reserve de la biosphère de Mapimi, Nord-Mexique). PhD thesis. Poitiers: Université de Poitiers.Google Scholar
  17. Drees, L.R., Manu, A., and Wilding, L.P. 1993. Characteristics of aeolian dusts in Niger, West Africa. Geoderma 59: 213–233.CrossRefGoogle Scholar
  18. Dunkerley, D.L., and Brown, K.J. 1995. Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. J. Arid Environ. 30: 41–55.CrossRefGoogle Scholar
  19. Dunkerley, D.L., and Brown, K.J. 1999. Banded vegetation near Broken Hill, Australia: significance of surface roughness and soil physical properties. Catena 37: 75–88.CrossRefGoogle Scholar
  20. Eldridge, D.L., and Greene, R.S.B. 1994. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32:389–415.CrossRefGoogle Scholar
  21. Galle S., Ehrmann, M., and Peugeot, C. 1999. Water balance on a banded vegetation pattern. A case study of tiger bush in western Niger. Catena 37: 197–216.CrossRefGoogle Scholar
  22. Goudie, A.S. 1990. The encyclopaedia dictionary of physical geography. UK: Blackwell.Google Scholar
  23. Greene, R.S.B. 1992. Soil physical properties of three geomorphic zones in a semi-arid mulga woodland. Aust. J. Soil Res. 30: 55–69.CrossRefGoogle Scholar
  24. Greene, R.S.B. 1993. Infiltration measurements in the semi-arid woodlands of eastern Australia—a comparison of methods. In Proceedings of the XVII international grassland congress, Palmerston North, New Zealand, pp. 79–80. Auckland: New Zealand Grass Association.Google Scholar
  25. Greene, R.S.B., and Ringrose-Voase, A.J. 1994. Micromorphological and hydraulic properties of surface crusts formed on a red earth soil in the semi-arid rangelands of eastern Australia. In eds. A.J. Ringrose-Voase and G.S. Humphreys, Proceedings of the IX international working meeting on soil micromorphology, pp. 763–776. Townsville, Queensland, Australia. Amsterdam: Elsevier Science Publishers.Google Scholar
  26. Greene, R.S.B., and Sawtell, G.R. 1992. A collection system for measuring runoff and soil erosion with a mobile rainfall simulator on crusted and stony red earth soils. Aust. J. Soil Res. 30: 457–463.Google Scholar
  27. Greene, R.S.B., Kinnell, P.I.A., and Wood, J.T. 1994. Role of plant cover and stock trampling on runoff and soil erosion from semi-arid wooded rangelands. Aust. J. Soil Res. 32: 953–973.CrossRefGoogle Scholar
  28. Greene, R.S.B., Nettleton, W.D., Chartres, C.J., Leys, J.F., and Cunningham, R.B. 1998. Runoff and micromorphological properties of grazed haplargids, near Cobar, N.S.W., Australia. Aust. J. Soil Res. 34:1–23.Google Scholar
  29. Janeau, J.L., Mauchamp, A., and Tarin, G. 1999. The soil surface characteristics of vegetation stripes in northern Mexico and their influences on the system hydrodynamics. An experimental approach. Catena 37: 165–173.CrossRefGoogle Scholar
  30. Lebel, T., Sauvageot, H., Hoepffner, M., Desbois, M., Guillot, B., and Hubert, P. 1992. Rainfall estimation in the Sahel: the EPSAT-Niger experiment. Hydrol. Sci. J. 37: 201–215.CrossRefGoogle Scholar
  31. Leprun, J.C. 1999. The influences of ecological factors on tiger bush and dotted bush patterns along a gradient from Mali to northern Burkina Faso. Catena 37: 25–44.CrossRefGoogle Scholar
  32. Litchfield, W.H., and Mabbutt, J.A. 1962. Hardpan in soils of semi-arid Western Australia. J. Soil Sci. 13: 148–159.CrossRefGoogle Scholar
  33. López-Portillo, J., Montaña, C, and Ezcurra, E. 1996. Stem demography of Prosopis glan-dulosa var. torreyana in vegetation arcs and associated bare areas. J. Veg. Sci. 7: 901–910.CrossRefGoogle Scholar
  34. Ludwig, J.A., and Tongway, D. J. 1995. Spatial organisation of landscapes and its function in semi-arid woodland. Landscape Ecol. 10: 51–63.CrossRefGoogle Scholar
  35. Lyford, F., and Qashu, H. 1969. Infiltration rates as affected by desert vegetation. Water Res. 5:1373–1376.CrossRefGoogle Scholar
  36. Mabbutt, J.A. 1972. Geomorphology of the Fowlers Gap-Calindary area. In Lands of the Fowlers Gap-Calindary area New South Wales. Research series 4, pp. 81–99. Sydney: Fowlers Gap Arid Zone Research Station, University of New South Wales.Google Scholar
  37. Mabbutt, J.A. 1973. Geomorphology of the Fowlers Gap station. In Lands of the Fowlers Gap Station, New South Wales, Research series 3, ed. J.A. Mabbutt, pp. 67–83. Sydney: Fowlers Gap Arid Zone Research Station, University of New South Wales.Google Scholar
  38. Mabbutt, J. A., and Fanning, PC. 1987. Vegetation banding in arid Western Australia. J. Arid Environ. 12: 41–59.Google Scholar
  39. Macdonald, B.C.T., Melville, M.D., and White, I. 1999. The distribution of soluble cations within a pattern ground gilgai complex, arid western New South Wales, Australia. Catena 37: 89–105.CrossRefGoogle Scholar
  40. Macfayden, W.A. 1950. Vegetation patterns in the semi-desert plains of British Somaliland. Geogr. J. 116: 199–210.CrossRefGoogle Scholar
  41. Malam Issa., O., Trichet, J., Défarge, C, Couté, A., and Valentin, C. 1999. Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37: 147–196.CrossRefGoogle Scholar
  42. Mauchamp, A., and Janeau, J.L. 1993. Water funnelling by the crown of Flourensia cernua, a Chihuahuan Desert shrub. J. Arid Environ. 25: 299–306.CrossRefGoogle Scholar
  43. Miles, R.L. 1993. Soil degradation processes in a semi-arid woodland. Unpublished doctoral thesis. Queensland: Griffith University.Google Scholar
  44. Montaña, C. 1992. The colonisation of bare areas in two-phase mosaics of an arid ecosystem. J. Ecol. 80: 315–327.CrossRefGoogle Scholar
  45. Montaña, C, López-Portillo, J., and Mauchamp, A. 1990. The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem. J. Ecol. 80: 315–327.Google Scholar
  46. Noble, J.C., Greene, R.S.B., and Müller, W.J. 1998. Herbage production following rainfall redistribution in a semi-arid mulga (Acacia aneura) woodland in western New South Wales. Rangel. J. 20: 206–225.CrossRefGoogle Scholar
  47. Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4:25–51.CrossRefGoogle Scholar
  48. Ouédraogo, P. 1997. Rôle des termites dans la structure et la dynamique d’une brousse tigrée soudano-sahélienne. Doctoral thesis. Paris: Paris VI University.Google Scholar
  49. Perroux, K.M., and White, I. 1988. Designs for disc permeameters. Soil Sci. Soc. Am. J. 52:1205–1215.CrossRefGoogle Scholar
  50. Perry, R.A. 1970. The effects on grass and browse production of various treatments on a mulga community in central Australia. In ed. M.J.T. Norman, Proceedings of the 11th international grassland congress, pp. 63–66. Surfers Paradise, Queensland, Australia. St. Lucia: University of Queensland Press.Google Scholar
  51. Peugeot, C, Estèves, M., Rajot, J.L., Vandervaere, J.P., and Galle, S. 1997. Runoff generation processes: results and analysis of field data collected at the east central supersite of the HAPEX-Sahel experiment. Spec. Issue J. Hydrol. 188–189: 181–204.Google Scholar
  52. Pickup, G. 1985. The erosion cell—A geomorphic approach to landscape classification in range assessment. Aust. Rangel. J. 7: 114–121.CrossRefGoogle Scholar
  53. Puigdefábregas, J., Gallart, F., Biaciotta, O., Allogia, M., and del Barrio, G. 1999. Banded vegetation patterning in a subantarctic forest of Tierra del Fuego, as an outcome of the interaction between wind and tree growth. Acta Oecol. 20: 135–146.CrossRefGoogle Scholar
  54. Römkens, M.J.M., Prasad, S.N., and Whisle, F.D. 1990. Surface sealing and infiltration. In Process studies in hillslope hydrology, eds. M.G. Anderson and I.P. Burt, pp. 127–172. New York: John Wiley and Sons.Google Scholar
  55. Scholte, T.S. 1989. Vegetation-soil relations in an area with sealed chromic luvisols, Kenya. Arid Soil Res. Rehab. 3: 337–348.CrossRefGoogle Scholar
  56. Seghieri, J., Galle, S., Rajot, J.L., and Ehrmann, M. 1997. Relationships between the soil moisture regime and the growth of the herbaceous plants in a natural vegetation mosaic in Niger. J. Arid Environ. 36: 87–102.CrossRefGoogle Scholar
  57. Slatyer, R.O. 1961. Methodology of a water balance study conducted on a desert woodland (Acacia aneura F. Muell.) community in central Australia. UNESCO Arid Zone Res. 16: 15–26.Google Scholar
  58. Stace, H.C.T., Hubble, G.D., Brewer, R., Northcote, K.H., Sleeman, J.R., Mulcahy, M.J., and Hallsworth, E.G., eds. 1968. A handbook of Australian soils. Adelaide, South Australia: Rellim.Google Scholar
  59. Thiéry, J., d’Herbès, J.M., and Valentin, C. 1995. A model for simulating the genesis of banded patterns in Niger. J. Ecol. 83: 497–507.CrossRefGoogle Scholar
  60. Thurow, T.L., Blackburn, W.H., and Taylor, C.A. 1988. Infiltration and interill erosion responses to selected livestock grazing strategies, Edwards Plateau, Texas. J. Rangel. Manage 41: 296–302.CrossRefGoogle Scholar
  61. Tongway, D.J., and Ludwig, J.A. 1990. Vegetation and soil patterning in semi-arid mulga lands of eastern Australia. Aust. J. Ecol. 15: 23–34.CrossRefGoogle Scholar
  62. Tongway, D.J., and Ludwig, J.A. 1994. Small-scale resource heterogeneity in semi-arid landscapes. Pac. Conserv. Biol. 1: 201–208.Google Scholar
  63. Tongway, D.J., and Ludwig, J.A. 1997. The nature of landscape dysfunction in rangelands. In Landscape ecology function and management: principles from Australia’s range-lands, eds. J. Ludwig, D. Tongway, D. Freudenberger, J. Noble, and K. Hodgkinson, pp. 49–61. Melbourne: CSIRO Publishing.Google Scholar
  64. Valentin, C, and Bresson, L.M. 1992. Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55: 225–245.CrossRefGoogle Scholar
  65. Valentin, C, and d’Herbès, J.M. 1999. Niger tiger bush as a natural water harvesting system. Catena 37: 231–256.CrossRefGoogle Scholar
  66. Valentin, C, d’Herbès, J.M., and Poesen, J. 1999. Soil and water components of banded vegetation patterns. Catena 37: 1–24.CrossRefGoogle Scholar
  67. Whitford, W.G., Ludwig, J.A., and Noble, J.C. 1992. The importance of subterranean termites in semi-arid ecosystems in south-eastern Australia. J. Arid Environ. 22: 87–91.Google Scholar
  68. Williams, J., and Bonell, M. 1988. The influence of scale of measurement on the spatial and temporal variability of the Philip infiltration parameters—an experimental study in an Australian savannah woodland. J. Hydrol. 104: 33–51.CrossRefGoogle Scholar
  69. Winkworth, R.E. (1970). The soil water regime of an arid grassland (Eragrostis eriopoda) community in central Australia. Agric. Meteorol. 7: 387–399.CrossRefGoogle Scholar
  70. Worrall, G.A. 1959. The Butana grass patterns. J. Soil Sci. 10: 34–53.CrossRefGoogle Scholar
  71. Zonneveld, I.S. 1999. A geomorphological based banded (‘tiger’) vegetation pattern related to former dune fields in Sokoto (northern Nigeria). Catena 37: 45–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Richard S. B. Greene
  • Christian Valentin
  • Michel Esteves

There are no affiliations available

Personalised recommendations