Banded Vegetation Patterns and Related Structures

  • Jean-Marc d’Herbès
  • Christian Valentin
  • David J. Tongway
  • Jean-Claude Leprun
Part of the Ecological Studies book series (ECOLSTUD, volume 149)


The study of banded vegetation pattern has proceeded in three steps. The first step consisted of a recognition phase. An early reference to plant formation in western British Somaliland was that of (1941). Most banded vegetation patterns are difficult to identify on the ground, and their spatial extent was not appreciated until the 1950s when the systematic aerial photographic surveys began (Clos-Arceduc 1956). From the air, the pattern is clearly composed of regularly spaced densely vegetated bands interspersed with bare or less densely vegetated areas. Aerial photographic interpretation proceeded at a number of locations at about the same time, leading to a proliferation of local names for banded vegetation (Boaler and Hodge 1964; White 1969; Mabbutt and Fanning 1987; Montana, López-Portillo, and Mauchamp 1990). Often these bands or arcs cover broad areas of several square kilometers, forming a distinctive pattern similar to the pelt of a tiger, hence its common name of tiger bush in Africa (Figure 1.1). Similar landscape patterns were called mulga groves in Australia (Slatyer 1961) and mogote in Mexico (Cornet, Delhoume, and Montana 1988). Many preliminary studies were characterized by “observation/description”: the scope of published work was somewhat speculative, exploring a range of explanations for a new and enigmatic landform (Clos-Arceduc 1956; Boaler and Hodge 1964; White 1970).


Slope Gradient Vegetation Pattern Chihuahuan Desert Dune Field Vegetation Mosaic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguiar, M.R., and Sala, O.E. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14: 273–277.PubMedCrossRefGoogle Scholar
  2. Ambouta, K.J.M. 1984. Contribution l’édaphologie de la brousse tigrée de l’Ouest nigérien. Doctor-engineer thesis. Nancy, France: University of Nancy.Google Scholar
  3. Audry, P., and Rossetti, C. 1962. Observation sur les sols et la végétation en Mauritanie du sud-est et sur la bordure adjacente du Mali (1959–1961). In Prospection ecologique en Afrique Occidentale, pp. 53–71. Rome: Food and Agriculture Organization.Google Scholar
  4. Bergkamp, G., Cerdà, A., and Imeson, A.C. 1999. Magnitude-frequency analysis of water redistribution along a climate gradient in Spain. Catena 37:129–146.CrossRefGoogle Scholar
  5. Bettenay, E., and Churchward, H.M. 1974. Morphology and stratigraphic relationships of the Wiluna hardpan in arid Western Australia. J. Geol. Soc. Aust. 21: 73–80.CrossRefGoogle Scholar
  6. Boaler, S.B., and Hodge, C.A.H. 1964. Observations on vegetation arcs in the northern region, Somalia Republic. J. Ecol. 52: 511–544.CrossRefGoogle Scholar
  7. Bromley, J., Brouwer, J., Barker, T., Gaze, S., and Valentin, C. 1997. The role of surface water redistribution in an area of patterned vegetation in south west Niger. J. Hydrol. 198: 1–29.CrossRefGoogle Scholar
  8. Bryan, R.B., and Brun, S.E. 1999. Laboratory experiments on sequential scour/deposition and their application to the development of banded vegetation. Catena 37(1–2): 147–163.CrossRefGoogle Scholar
  9. Chappell, A., Valentin, C., Warren, A., Noon, P., Charlton, M., and d’Herbès, J.M. 1999. Testing the validity of upslope migration in banded vegetation from south-west Niger. Catena 37(1–2): 217–230.CrossRefGoogle Scholar
  10. Chartres, C.J. 1982. The role of geomorphology in land evaluation for tropical agriculture. Z. Geomorphol. Suppl. 44: 21–32.Google Scholar
  11. Clayton, W.D. 1966. Vegetation ripples near Gummi, Nigeria. J. Ecol. 54: 415–417.Google Scholar
  12. Clayton, W.D. 1969. The vegetation of Katsina province, Nigeria. J. Ecol. 57: 445–451.Google Scholar
  13. Clos-Arceduc, M. 1956. Etude sur photographies aériennes d’une formation végétale sahélienne: la brousse tigrée. Bull. IFAN Ser. A 7(3): 677–684.Google Scholar
  14. Cornet, A.F, Delhoume, J.P., and Montana, C. 1988. Dynamics of striped vegetation patterns and water balance in the Chihuahuan Desert. In Diversity and pattern in land communities, eds. J.J. During, M.J.A. Werger, and J.H. Willems, pp. 221–231. The Hague: SPB Academic Publishing.Google Scholar
  15. Cornet, A.F., Montaña, C., Delhoume, J.P., and López-Portillo, J. 1992. Water flows and the dynamics of desert vegetation stripes. In Landscape boundaries. Consequences for bi-otic diversity and ecological flows. Ecological studies 92, eds. A.J. Hansen and F. Di Castri, pp. 327–345. New York: Springer-Verlag.Google Scholar
  16. Couteron, P., Mahamane, A., Ouedraogo, P., and Seghieri, J. 2000. Differences between banded thickets (tiger bush) at two sites in West Africa. J. Veg. Sci. 11: 321–328.CrossRefGoogle Scholar
  17. Delhoume, J.P. 1995. Fonctionnement hydro-pédologique d’une toposéquence de sols en milieu aride (Réserve de la Biosphère de Mapimi, Nord-Mexique). Doctoral thesis. Poitiers, France: Université de Poitiers.Google Scholar
  18. d’Herbès, J.M., and Valentin, C. 1997. Land surface conditions of the Niamey region (Niger): ecological and hydrological implications. J. Hydrol. 188–189: 18–42.CrossRefGoogle Scholar
  19. d’Herbès, J.M., Valentin, C, and Thiéry, J. 1997. La brousse tigrée au Niger: synthèse des connaissances acquises. Hypothèses sur la genèse et les facteurs déterminant les différentes structures contractées. In Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens, eds. J.M. d’Herbès, J.M.K. Ambouta, and R. Peltier, pp. 120–131. Paris: John Libbey Eurotext.Google Scholar
  20. Dunkerley, D.L., and Brown, K.J. 1995. Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. J. Arid Environ. 30: 41–55.CrossRefGoogle Scholar
  21. Eddy, J., Humphreys, G.S., Hart, D.M., Mitchell, P.B., and Fanning, P.C. 1999. Vegetation arcs and litter dams: similarities and differences. Catena 37(1/2): 57–73.CrossRefGoogle Scholar
  22. Gillett, J. 1941. The plant formations of western British Somaliland and the Harar province of Abyssinia. Kew Bull. 2:37–75.Google Scholar
  23. Goudie, A.S., Sands, M.J.S., and Livingston, I. 1992. Aligned linear gilgai in the West Kim-berley District, Western Australia. J. Arid Environ. 23: 157–167.Google Scholar
  24. Greenwood, J.E.G.W 1957. The development of vegetation patterns in Somaliland Protectorate. Geogr. J. 123: 465–473.CrossRefGoogle Scholar
  25. Hemming, C.F. 1965. Vegetation arcs in Somaliland. J. Ecol. 53: 57–67.CrossRefGoogle Scholar
  26. Hiernaux, P., and Gérard, B. 1999. The influence of vegetation pattern on the productivity, diversity and stability of vegetation: the case of “brousse tigree.” Acta Oecol. 20: 147–158.CrossRefGoogle Scholar
  27. Ives, R.L. 1946. Desert ripples. Am. J. Sci. 244: 492–501.CrossRefGoogle Scholar
  28. Janeau, J.L., Mauchamp, A., and Tarin, G. 1999. The soil characteristics of vegetation stripes in northern Mexico and their influences on the system hydrodynamics: an experimental approach. Catena 37(1–2): 165–173.CrossRefGoogle Scholar
  29. Kohyama, T. 1988. Etiology of “Shigamare” dieback and regeneration in subalpine Abies forests of Japan. GeoJournal 17: 201–209.CrossRefGoogle Scholar
  30. Lejeune, O., and Tlidi, M. 1999. A model for the explanation of vegetation stripes (tiger bush). J. Veg. Sci. 10: 201–208.CrossRefGoogle Scholar
  31. Leprun, J.C. 1992. Etude de quelques brousses tigrées sahéliennes: structure, dynamique, écologie. In L’aridité, une contrainte au développement, eds. E. Le Floc’h, M. Grouzis, A. Cornet, and J.C. Bille, pp. 221–244. Paris: Editions de l’ORSTOM.Google Scholar
  32. Leprun, J.C. 1999. The influences of ecological factors on tiger bush and dotted patterns along a gradient from Mali to northern Burkina Faso. Catena 37: 25–44.CrossRefGoogle Scholar
  33. López-Portillo, J., and Montana, C. 1999. Spatial distribution of Prosopis glandulosa var. torreyana in vegetation stripes of the southern Chihuahuan desert. Acta Oecol. 20: 197–208.CrossRefGoogle Scholar
  34. Mabbutt, J.A., and Fanning, P.C. 1987. Vegetation banding in arid Western Australia. J. Arid Environ. 12: 41–59.Google Scholar
  35. Macfayden, W.A. 1950. Vegetation patterns in British Somalilands. Nature 165: 121.CrossRefGoogle Scholar
  36. Mauchamp, A., and Janeau, J.L. 1993. Water funneling by the crown of Flourensia cernua, a Chihuahuan Desert shrub. J. Arid Environ. 25: 299–306.CrossRefGoogle Scholar
  37. Mauchamp, A., Rambal, S., and Lepart, J. 1994. Simulating the dynamics of a vegetation mosaic: a spatialized functional model. Ecol. Model. 71: 107–130.CrossRefGoogle Scholar
  38. Montaña, C. 1992. The colonization of bare areas in two-phase mosaics of an arid ecosystem. J. Ecol. 80: 315–327.CrossRefGoogle Scholar
  39. Montaña, C, López-Portillo, J., and Mauchamp, A. 1990. The response of two woody species to conditions created by a shifting ecotone in an arid ecosystem. J. Ecol. 78: 789–798.CrossRefGoogle Scholar
  40. Noble, J.C., Greene, R.S.B., and Müllier, W.J. 1998. Herbage production following rainfall redistribution in a semi-arid mulga (Acacia aneura) woodland in western New South Wales. Rangel. J. 20(2): 206–225.CrossRefGoogle Scholar
  41. Puigdefábregas, J., and Sanchez, G. 1996. Geomorphological implications of vegetation patchiness on semi-arid slopes. In Advance in hillslope processes, Volume 2: eds. M.G. Anderson and S.M. Brooks, 1027–1060. Chichester, UK: Wiley.Google Scholar
  42. Puigdefábregas, J., Gallart, F., Biaciotta, O., Allogia, M., and del Barrio, G. 1999. Banded vegetation patterning in a subantarctic forest of Tierra del Fuego, as an outcome of the interaction between wind and tree growth. Acta Oecol. 20: 135–146.CrossRefGoogle Scholar
  43. Sato, K., and Iwasa, Y. 1993. Modeling of wave regeneration in subalpine Abies forests: population dynamics with spatial structure. Ecology 74: 1538–1550.CrossRefGoogle Scholar
  44. Seghieri, J., Galle, S., Rajot, J.L., and Ehrmann, M. 1997. Relationships between the soil moisture regime and the growth of the herbaceous plants in a natural vegetation mosaic in Niger. J. Arid Environ. 36: 87–102.CrossRefGoogle Scholar
  45. Slatyer, R.O. 1961. Methodology of a water balance study conducted on a desert woodland (Acacia armera F. Muell.) community in central Australia. UNESCO Arid Zone Res. 16: 15–26.Google Scholar
  46. Sprugel, D.G. 1976. Dynamic structure of wave regenerated Abies balsamea forests in northeastern United States. J. Ecol. 64: 889–911.CrossRefGoogle Scholar
  47. Sprugel, D.G., and Bormann, F.H. 1981. Natural distance and the steady state in high altitude balsam fir forests. Science 211: 390–393.PubMedCrossRefGoogle Scholar
  48. Thiéry, J., d’Herbès, J.M., and Valentin, C. 1995. A model for simulating the genesis of banded patterns in Niger. J. Ecol. 83: 497–507.CrossRefGoogle Scholar
  49. Tongway, D.J. 1993. Functional analysis of degraded rangelands as a means of defining appropriate restoration techniques. In eds. A. Gaston, M. Kerrick, and H. Le Houérou, Proceedings of the fourth international rangeland congress 1991, pp. 166–168. Montpellier, France: Association Française de Pastoralisme.Google Scholar
  50. Tongway, D.J., and Ludwig, J.A. 1990. Vegetation and soil patterning in semi-arid lands of eastern Australia. Aust. J. Ecol. 15: 23–34.CrossRefGoogle Scholar
  51. Valentin, C., and d’Herbès, J.M. 1999. Niger tiger bush as a natural water harvesting system. Catena 37: 231–256.CrossRefGoogle Scholar
  52. Valentin, C, d’Herbès, J.M., and Poesen, J. 1999. Soil and water components of banded vegetation patterns. Catena 37: 1–24.CrossRefGoogle Scholar
  53. White, L.P. 1969. Vegetation arcs in Jordan. J. Ecol. 57: 461–464.CrossRefGoogle Scholar
  54. White, L.P. 1970. Brousse tigrée patterns in southern Niger. J. Ecol. 58: 549–553.CrossRefGoogle Scholar
  55. White, L.P. 1971. Vegetation stripes on sheet wash surfaces. J. Ecol. 59: 615–622.CrossRefGoogle Scholar
  56. Wickens, G.E., and Collier, F.W. 1971. Some vegetation patterns in the Republic of the Sudan. Geoderma 6: 43–59.CrossRefGoogle Scholar
  57. Wilson, A.D., Tupper, G.J., and Tongway, D.J. 1982. Range condition assessment in bladder saltbush (Atriplex vesicaria) communities. Aust. Rangel. J. 4(2): 41–51.CrossRefGoogle Scholar
  58. Worral, G.A. 1959. The butana grass patterns. J. Soil Sci. 10(1): 34–61.CrossRefGoogle Scholar
  59. Worral, G.A. 1960. Tree patterns in the Sudan. J. Soil Sci. 11(1): 63–71.CrossRefGoogle Scholar
  60. Wu, X.B., Thurow, T.L., and Whisenant, S.G. 2000. Fragmentation and functional change of tiger bush landscapes in Niger. J. Ecol. 88:790–800.CrossRefGoogle Scholar
  61. Zonneveld, I.S. 1999. A geomorphological based banded (“tiger”) vegetation pattern related to former dune fields in sokoto (northern Nigeria). Catena 37: 45–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jean-Marc d’Herbès
  • Christian Valentin
  • David J. Tongway
  • Jean-Claude Leprun

There are no affiliations available

Personalised recommendations