Coherent Spectroscopy on Quantum Wires

  • M. Bayer
  • T. Baars
  • W. Braun
  • A. Forchel


Low-dimensional semiconductor structures have attracted strong attention during the past two decades [1]. These developments were driven both by the expectation of novel physical phenomena in these structures and by their large application potential. While for quantum wells a detailed understanding of the electronic properties has already been obtained, for quantum wires and quantum dots there is still a considerable lack of knowledge.

In particular, the kinetic processes in these structures have not been very well understood up to now. The spectroscopic technique of four-wave mixing (FWM) has been shown to be a very elegant technique to provide insight into these processes [2, 3, 4]. Most of these studies, however, were done on three- and two-dimensional semiconductor structures. Here we extend these studies to the case of quantum wires. Further, FWM experiments are not capable of giving insight into the carrier dynamics, but they also give insight into the excitonic structure through the observation of quantum beats. In this article we want to review our FWM experiments performed during the last few years and to compare them to studies reported in the literature. For a systematic understanding of the effects of confinement and of dimensionality the size dependence of the physical properties has to be studied experimentally. This possibility is offered by the fabrication of nanostructures by lithographic techniques, which permit one to vary both size and shape of the structures. Here we have investigated InGaAs/GaAs quantum wires fabricated by patterning of quantum well structures by means of FWM.

The chapter is organized as follows: First we will present the results of linear spectroscopic studies on quantum wire structures, and we describe the experimental setup used for the FWM studies. In Section 8.2 we report on the exciton structure in the one-dimensional structure as determined from quantum beat spectroscopy. Section S.3 will be devoted to the study of the scattering of excitons by either phonons or by excitons.


Quantum Wire Exciton Binding Energy Exciton Density Wire Width Ground State Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    see, for example, C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, San Diego, 1991).Google Scholar
  2. [2]
    J. Kuhl, A. Honold, L. Schultheis and C.W. Tu, Festkörperprobleme 29, 157 (1989).Google Scholar
  3. [3]
    J.M. Hvam, in Nonlinear Spectroscopy of Solids: Advances and Applications ed. by B. Di Bartolo and B. Bowlby (Plenum Press, New York, 1994), p. 91.Google Scholar
  4. [4]
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Verlag, Berlin, 1996).Google Scholar
  5. [5]
    T. Ogawa and T. Takagahara, Phys. Rev. B 43, 14325 (1991).CrossRefGoogle Scholar
  6. [6]
    M. Bayer, S.N. Walck, T.L. Reinecke and A. Forchel, Phys. Rev. B 57, 6584 (1998).CrossRefGoogle Scholar
  7. [7]
    M. Bayer, A. Forchel, I.E. Itskevich, T.L. Reinecke, P.A. Knipp, Ch. Gréus, R. Spiegel and F. Faller, Phys. Rev. B 49, 14782 (1994).CrossRefGoogle Scholar
  8. [8]
    Y.-C. Chang, L.L. Chang and L. Esaki, Appl. Phys. Lett. 47, 1324 (1985).CrossRefGoogle Scholar
  9. [9]
    J.W. Brown and H.N. Spector, Phys. Rev. B 35, 3009 (1987).CrossRefGoogle Scholar
  10. [10]
    M.H. Degani and O. Hipólito, Phys. Rev. B 35, 9345 (1987).CrossRefGoogle Scholar
  11. [11]
    P. Christol, P. Lefebvre and H. Mathieu, J. Appl. Phys. 74, 5626 (1993).CrossRefGoogle Scholar
  12. [12]
    F. Rossi, G. Goldoni and E. Molinari, Phys. Rev. Lett. 78, 3527 (1997).CrossRefGoogle Scholar
  13. [13]
    Y. Nagamune, Y. Arakawa, S. Tsukamoto, M. Nishioka, S. Sasaki und N. Miura, Phys. Rev. Lett. 69, 2963 (1992).CrossRefGoogle Scholar
  14. [14]
    R. Rinaldi, R. Cingolani, M. Lepore, M. Ferrara, I.M. Catalano, F. Rossi, L. Rota, E. Molinari, P. Lugli, U. Marti, D. Martin, F. Morier-Gemoud, P. Ruterana and F.K. Reinhart, Phys. Rev. Lett. 73, 2899 (1994).CrossRefGoogle Scholar
  15. [15]
    Y Nagamune, T. Tanaka, T. Kono, S. Tsukamoto, M. Nishioka, Y Arakawa, K. Uchida and N. Miura, Appl. Phys. Lett. 66, 2502 (1995).CrossRefGoogle Scholar
  16. [16]
    H. Weman, M. Potemski, M.E. Lazzouni, M.S. Miller and J.L. Merz, Phys. Rev. B 53, 6959 (1996).CrossRefGoogle Scholar
  17. [17]
    M. Bayer, S. Walck, T.L. Reinecke and A. Forchel, Europhys. Lett. 39, 453 (1997).CrossRefGoogle Scholar
  18. [18]
    W. Wegscheider, L.N. Pfeiffer, M.M. Dignam, A. Pinczuk, K.W. West, S.L. McCall and R. Hull, Phys. Rev. Lett. 71, 4071 (1993).CrossRefGoogle Scholar
  19. [19]
    T. Someya, H. Akiyama and H. Sakaki, Phys. Rev. Lett. 76, 2965 (1996).CrossRefGoogle Scholar
  20. [20]
    B.F. Feuerbacher, J. Kuhl, R. Eccleston and K. Ploog, Solid State Commun. 74, 1279 (1990).CrossRefGoogle Scholar
  21. [21]
    K. Leo, T.C. Damen, J. Shah, E.O. Göbel and K. Köhler, Appl. Phys. Lett. 57, 19 (1990).CrossRefGoogle Scholar
  22. [22]
    V. Langer, H. Stolz and W. von der Osten, Phys. Rev. Lett. 64, 854 (1990).CrossRefGoogle Scholar
  23. [23]
    K. Leo, T.C. Damen, J. Shah and K. Köhler, Phys. Rev. B 42, 11359 (1990).CrossRefGoogle Scholar
  24. [24]
    E.O. Göbel, K. Leo, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller and K. Köhler, Phys. Rev. Lett. 64, 1801 (1990).CrossRefGoogle Scholar
  25. [25]
    M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel, P. Thomas and K. Köhler, Phys. Rev. Lett. 69, 3631 (1992).CrossRefGoogle Scholar
  26. [26]
    J. Feldmann, T. Meier, G. von Plessen, M. Koch, E.O. Göbel, P. Thomas, G. Bacher, C. Hartmann, H. Schweizer, W. Schäfer and H. Nickel, Phys. Rev. Lett. 70, 3027 (1993).CrossRefGoogle Scholar
  27. [27]
    E.J. Mayer, J.O. White, G.O. Smith, H. Lage, D. Heitmann, K. Ploog and J. Kuhl, Phys. Rev. B 49, 2993 (1994).CrossRefGoogle Scholar
  28. [28]
    W. Braun, M. Bayer, A. Forchel, H. Zull, J.P. Reithmaier, A.I. Filin, S.N. Walck, T.L. Reinecke, Phys. Rev. B 55, 9290 (1997).CrossRefGoogle Scholar
  29. [29]
    J. Feldmann, M. Koch, E.O. Göbel, F. Jahnke, T. Meier, W. Schäfer, P. Thomas, S.W. Koch, H. Nickel, S. Luttgen and W. Stolz, Semicond. Sci. Technol. 9, 1965 (1994).CrossRefGoogle Scholar
  30. [30]
    R.C. Miller, D.A. Kleinman, A.C. Gossard, and O. Munteanu, Phys. Rev. B. 25, 6545 (1982).CrossRefGoogle Scholar
  31. [31]
    see e.g. S. Charbonneau, T. Steiner, M.L.W. Thewalt, E.S. Koteies, J.Y. Chi, and B. Elman, Phys. Rev. B 38, 3583 (1988).CrossRefGoogle Scholar
  32. [32]
    D.J. Lovering, R.T. Phillips, G.J. Denton and G.W. Smith, Phys. Rev. Lett. 68, 1880 (1992).CrossRefGoogle Scholar
  33. [33]
    B.F. Feuerbacher, J. Kuhl and K. Ploog, Phys. Rev. B 43, 2439 (1991).CrossRefGoogle Scholar
  34. [34]
    K.-H. Pantke, D. Oberhauser, V.G. Lyssenko, J.M. Hvam, and G. Weimann, Phys. Rev. B 47 2413 (1993).CrossRefGoogle Scholar
  35. [35]
    D.S. Kim, J. Shah, T.C. Damen, L.N. Pfeiffer and W. Schäfer, Phys. Rev. B 50, 5775 (1994).CrossRefGoogle Scholar
  36. [36]
    E.J. Mayer, G.O. Smith, V. Heuckeroth, J. Kuhl, K. Bott, A. Schulze, T. Meier, S.W. Koch, P. Thomas, R. Hey and K. Ploog, Phys. Rev. B 51, 10909 (1995).CrossRefGoogle Scholar
  37. [37]
    T.F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S.T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S.W. Koch, and E.O. Göbel, Phys. Rev. B 54, 4436 (1996).CrossRefGoogle Scholar
  38. [38]
    D. Birkedal, J. Singh, V.G. Lyssenko, J. Erland and J.M. Hvam, Phys. Rev. Lett. 76, 672 (1996).CrossRefGoogle Scholar
  39. [39]
    W. Langbein, J.M. Hvam, M. Umlauff, H. Kalt, B. Jobst and D. Hommel, Phys. Rev. B 55, 7383 (1997).CrossRefGoogle Scholar
  40. [40]
    A. Euteneuer, J. Möbius, R. Rettig, E.J. Mayer, M. Hofmann, W. Stolz, E.O. Göbel and W.W. Rühle, Phys. Rev. B 56, 10028 (1997).CrossRefGoogle Scholar
  41. [41]
    S. Adachi, T. Miyashita, S. Takeyama, Y. Takagi, A. Tackeuchi, and M. Nakayama, Phys. Rev. B 55, 1654 (1997).CrossRefGoogle Scholar
  42. [42]
    W.F. Brinkman, T.M. Rice, and B. Bell, Phys. Rev. B 8, 1570 (1973).CrossRefGoogle Scholar
  43. [43]
    A.L. Ivanov and H. Haug, Phys. Rev. Lett. 74, 438 (1995).CrossRefGoogle Scholar
  44. [44]
    K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, Phys. Rev. Lett. 73, 1138 (1994).CrossRefGoogle Scholar
  45. [45]
    Y.Z. Hu, S.W. Koch, M. Lindberg, N. Peyghambarian, E.L. Pollock, and F.F. Abraham, Phys. Rev. Lett 64, 1805 (1990).CrossRefGoogle Scholar
  46. [46]
    L. Bânyai, I. Galbraith, C. Ell, and H. Haug, Phys. Rev. B 36, 6099 (1987).CrossRefGoogle Scholar
  47. [47]
    F.L. Madarasz, F. Szmulowicz, F.K. Hopkins, and D.L. Dorsey, Phys. Rev B 49, 13528 (1994); R. O. Klepfer, F.L. Madarasz, and F. Szmulowicz, Phys. Rev. B 51, 4633 (1995).CrossRefGoogle Scholar
  48. [48]
    see, e.g., W. Schäfer, D.S. Kim, J. Shah, T.C. Damen, J.E. Cunningham, K.W. Goossen, L.N. Pfeiffer, and K. Köhler, Phys. Rev. B 53, 16429 (1996).CrossRefGoogle Scholar
  49. [49]
    see, e.g., H.H. Yaffe, Y. Prior, J.P. Harbison, and L.T. Florez, J. Opt. Soc. Am. B 10, 578 (1993).CrossRefGoogle Scholar
  50. [50]
    T. Baars, W. Braun, M. Bayer and A. Forchel, Phys. Rev. B 58, 1750 (1998).CrossRefGoogle Scholar
  51. [51]
    S. Schmitt-Rink, D. Bennhardt, V. Heuckeroth, P. Thomas, P. Haring, G. Maidorn, H. Bakker, K. Leo, D.-S. Kim, J. Shah, and K. Köhler, Phys. Rev. B 46, 10460 (1992).CrossRefGoogle Scholar
  52. [52]
    H. Nickolaus and F. Henneberger, Phys. Rev. B 57, 8774 (1998).CrossRefGoogle Scholar
  53. [53]
    H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).CrossRefGoogle Scholar
  54. [54]
    S. Briggs and J.P. Leburton, Phys. Rev. B 38, 8163 (1988).CrossRefGoogle Scholar
  55. [55]
    U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990).CrossRefGoogle Scholar
  56. [56]
    G. Fasol, Appl. Phys. Lett. 61, 831 (1992).CrossRefGoogle Scholar
  57. [57]
    H. Sakaki, Surf. Sci. 267, 623 (1992).CrossRefGoogle Scholar
  58. [58]
    L. Rota, F. Rossi, S.M. Goodnick, P. Lugli, E. Molinari and W. Porod, Phys. Rev. B 47, 1632 (1993).CrossRefGoogle Scholar
  59. [59]
    S. Das Sarma and V.B. Campos, Phys. Rev. B 47, 3728 (1993).CrossRefGoogle Scholar
  60. [60]
    S. Rudin and T.L. Reinecke, Phys. Rev. B 41, 3017 (1990).CrossRefGoogle Scholar
  61. [61]
    S. Rudin, T.L. Reinecke and B. Segall, Phys. Rev. B 42, 11218 (1990).CrossRefGoogle Scholar
  62. [62]
    D.S. Kim, J. Shah, J.E. Cunningham, T.C. Damen, W. Schäfer, M. Hartmann and S. Schmitt-Rink, Phys. Rev. Lett. 68, 1006 (1992).CrossRefGoogle Scholar
  63. [63]
    V. Srinivas, J. Hryniewicz, Y.J. Chen and C.E.C. Wood, Phys. Rev. B 46, 10193 (1992).CrossRefGoogle Scholar
  64. [64]
    D. Oberhauser, K.-H. Pantke, J.M. Hvam, G. Weimann and C. Klingshirn, Phys. Rev. B 47, 6827 (1993).CrossRefGoogle Scholar
  65. [65]
    T. Ruf, J. Spitzer, V.F. Sapega, V.I. Belitsky, M. Cardona and K. Ploog, Phys. Rev. B 50, 1792 (1994).CrossRefGoogle Scholar
  66. [66]
    D. Gammon, S. Rudin, T.L. Reinecke, D.S. Katzer and C.S. Kyono, Phys. Rev. B 51, 16785 (1995).CrossRefGoogle Scholar
  67. [67]
    J. Lee, E.S. Koteles and M.O. Vassell, Phys. Rev. B 33, 5512 (1986).CrossRefGoogle Scholar
  68. [68]
    E.J. Mayer, N.T. Pelekanos, J. Kuhl, N. Magnea and H. Mariette, Phys. Rev. B 51, 17263 (1995).CrossRefGoogle Scholar
  69. [69]
    H.P. Wagner, A. Schätz, R. Maier, W. Langbein and J.M. Hvam, Phys. Rev. B 56, 12581 (1997).CrossRefGoogle Scholar
  70. [70]
    W. Braun, M. Bayer, A. Forchel, H. Zull, J.P. Reithmaier, A.I. Filin, T.L. Reinecke, Phys. Rev. B 56, 12096 (1997).CrossRefGoogle Scholar
  71. [71]
    T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620 (1979).CrossRefGoogle Scholar
  72. [72]
    M. Oestreich, W.W. Rühle, H. Lage, D. Heitmann and K. Ploog, Phys. Rev. Lett. 70, 1682 (1993).CrossRefGoogle Scholar
  73. [73]
    W. Braun, M. Bayer, A. Forchel, O.M. Schmitt, L. Bányai, H. Haug, A.I. Filin, Phys. Rev. B 58, 12364 (1998).CrossRefGoogle Scholar
  74. [74]
    L. Schultheis, J. Kuhl, A. Honold and C.W. Tu, Phys. Rev. Lett. 57, 1635 (1986).CrossRefGoogle Scholar
  75. [75]
    A. Honold, L. Schultheis, J. Kuhl and C.W. Tu, Phys. Rev. B 40, 6442 (1989).CrossRefGoogle Scholar
  76. [76]
    G. Manzke, K. Henneberger and V. May, phys. stat. sol. (b) 139, 233 (1987).CrossRefGoogle Scholar
  77. [77]
    S. Schmitt-Rink, D.S. Chemla and D.A.B. Miller, Phys. Rev. B 32, 6601 (1985).CrossRefGoogle Scholar
  78. [78]
    C. Lonsky, P. Thomas and A. Weller, Phys. Rev. Lett. 63, 652 (1989).CrossRefGoogle Scholar
  79. [79]
    T. Takagahara, J. Lumin. 44, 347 (1989).CrossRefGoogle Scholar
  80. [80]
    A.J. Fischer, D.S. Kim, J. Hays, W. Shan, J.J. Song, D.B. Eason, J. Ren, J.F. Schetzina, H. Luo and J.K. Furdyna, Phys. Rev. B 50, 17643 (1994).CrossRefGoogle Scholar
  81. [81]
    M. Koch, G. Bastian, R. Hellmann, J. Feldmann, E.O. Göbel and P. Dawson, Exciton scattering with bare electrons phys. stat. sol. (b) 188, 485 (1995).CrossRefGoogle Scholar
  82. [82]
    H.P. Wagner, W. Langbein, J.M. Hvam, G. Bacher, T. Kümmell and A. Forchel, Phys. Rev. B 57, 1797 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. Bayer
  • T. Baars
  • W. Braun
  • A. Forchel

There are no affiliations available

Personalised recommendations