Advertisement

Representation Theory of Finite Groups: from Frobenius to Brauer

  • Charles W. Curtis

Abstract

The representation theory of finite groups began with the pioneering research of Frobenius, Burnside, and Schur at the turn of the century. Their work was inspired in part by two largely unrelated developments which occurred earlier in the nineteenth century. The first was the awareness of characters of finite abelian groups and their application by some of the great nineteenth-century number theorists. The second was the emergence of the structure theory of finite groups, beginning with Galois’ brief outline of the main ideas in the famous letter written on the eve of his death and continuing with the work of Sylow and others, including Frobenius himself.

Keywords

Irreducible Representation Finite Group Conjugacy Class Simple Group Representation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Brauer, Über die Darstellungen von Gruppen in Galoischen Feldern, Actualités Scientifiques et Industrielles 195, Hermann, Paris, 1935.Google Scholar
  2. 2.
    R. Brauer, “On the representation of a group of order g in the field of gth roots of unity,” Amer. J. Math. 67 (1945), 461–471.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    R. Brauer, “On Artin’s L-series with general group characters,” Ann. of Math. (2)48 (1947), 502–514.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Brauer and C. J. Nesbitt, “On the modular representations of groups of finite order I,” Univ. of Toronto Studies, Math. Ser. 4, 1937.Google Scholar
  5. 5.
    W. Burnside, Theory of Groups of Finite Order, Cambridge, 1897; Second Edition, Cambridge, 1911.Google Scholar
  6. 6.
    R. Dedekind, “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen,” Göttingen Nachr. (1885), 141–159.Google Scholar
  7. 7.
    L. E. Dickson, “On the group defined for any given field by the multiplication table of any given finite group,” Trans. A.M.S. 3 (1902), 285–301.MATHCrossRefGoogle Scholar
  8. 8.
    L. E. Dickson, “Modular theory of group matrices,” Trans. A.M.S. 8 (1907), 389–398.MATHCrossRefGoogle Scholar
  9. 9.
    L. E. Dickson, “Modular theory of group characters,” Bull. A.M.S. 13 (1907), 477–488.CrossRefGoogle Scholar
  10. 10.
    P. G. Lejeune Dirichlet, “Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält,” Abh. Akad. d. Wiss. Berlin (1837), 45–81. Werke I, 313–342.Google Scholar
  11. 11.
    P. G. Lejeune Dirichlet, Vorlesungen über Zahlentheorie, 4th ed. Published and supplemented by R. Dedekind, Vieweg, Braunschweig, 1894.MATHGoogle Scholar
  12. 12.
    W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.MATHGoogle Scholar
  13. 13.
    W. Feit, M. Hall, and J. G. Thompson, “Finite groups in which the centralizer of any non-identity element is nilpotent,” Math. Z. 74 (1960), 1–17.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    W. Feit and J. G. Thompson, “Solvability of groups of odd order,” Pacific J. Math. 13 (1963), 775–1029.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    F. G. Frobenius, “Über vertauschbare Matrizen,” S’ber. Akad. Wiss. Berlin (1896), 601–614; Ges. Abh. II, 705–718.Google Scholar
  16. 16.
    F. G. Frobenius,“Über Gruppencharaktere ” S’ber. Akad. Wiss. Berlin (1896), 985–1021; Ges. Abh. Ill, 1–37.Google Scholar
  17. 17.
    F. G. Frobenius, “Über die Primfactoren der Gruppendeterminante,” S’ber. Akad. Wiss. Berlin (1896), 1343–1382; Ges. Abh. Ill, 38–77.Google Scholar
  18. 18.
    F. G. Frobenius, “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen,” S’ber. Akad. Wiss. Berlin (1897), 994–1015; Ges. Abh. III, 82–103.Google Scholar
  19. 19.
    F. G. Frobenius, “Über Relationen zwischen den Charakteren einer Gruppe und denen iher Untergruppen,” S’ber. Akad. Wiss. Berlin (1898), 501–515; Ges. Abh. III, 104–118.Google Scholar
  20. 20.
    F. G. Frobenius, “Über den Charaktere der symmetrischen Gruppe,” S’ber. Akad. Wiss. Berlin (1900), 516–534; Ges. Abh. III, 148–166.Google Scholar
  21. 21.
    F. G. Frobenius, “Über die Charaktere der alternirenden Gruppe,” S’ber. Akad. Wiss. Berlin (1901), 303–315; Ges. Abh. III, 167–179.Google Scholar
  22. 22.
    F. G. Frobenius, “Theorie der hyperkomplexen Grössen,” S’ber. Akad. Wiss. Berlin (1903), 504–537; Ges. Abh. III, 284–317.Google Scholar
  23. 23.
    C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801; English translation by A. A. Clarke, Yale University Press, New Haven, 1966.Google Scholar
  24. 24.
    T. Hawkins, “The origins of the theory of group characters,” Archive Hist. Exact Sc. 7 (1971), 142–170.MathSciNetCrossRefGoogle Scholar
  25. 25.
    T. Hawkins, “New light on Frobenius’ creation of the theory of group characters,” Archive Hist. Exact Sc. 12 (1974), 217–243.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    T. Hawkins, “Hypercomplex numbers, Lie groups, and the creation of group representation theory,” Archive Hist. Exact Sc. 8 (1971), 243–287.MathSciNetCrossRefGoogle Scholar
  27. 27.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1980.Google Scholar
  28. 28.
    N. Jacobson, Introduction, in EmmyNoether, Ges. Abh., Springer-Verlag, Berlin, 1983; 12–26.Google Scholar
  29. 29.
    W. Ledermann, “The origin of group characters,” J. Bangladesh Math. Soc. 1 (1981), 35–43.MathSciNetMATHGoogle Scholar
  30. 30.
    W. Ledermann, “Issai Schur and his school in Berlin,” Bull. London Math. Soc. 15 (1983), 97–106.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    A. Loewy, “Sur les formes quadratiques définies à indéterminées conjuguées de M. Hermite,” Comptes Rendus Acad. Sei. Paris 123 (1896), 168–171.MATHGoogle Scholar
  32. 32.
    H. Maschke, “Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind,” Math. Ann. 52 (1899), 363–368.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    E. H. Moore, “A universal invariant for finite groups of linear substitutions: with applications in the theory of the canonical form of a linear substitution of finite period,” Math. Ann. 50 (1898), 213–219.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    E. Noether, “Hyperkomplexe Grössen und Darstellungstheorie,” Math. Z. 30 (1929), 641–692; Ges. Abh. 563–992.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Berlin, 1901; Ges. Abh. 1, 1–72.Google Scholar
  36. 36.
    I. Schur, “Neue Begründung der Theorie der Gruppencharaktere,” S’ber. Akad. Wiss. Berlin (1905), 406–432; Ges. Abh. I, 143–169.Google Scholar
  37. 37.
    I. Schur, “Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen” S’ber. Akad. Wiss. Berlin (1906), 164–184; Ges. Abh. I, 177–197.Google Scholar
  38. 38.
    I. Schur, “Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen,” J, reine u. angew. Math. 132 (1907), 85–137; Ges. Abh. I, 198–205.MATHGoogle Scholar
  39. 39.
    E. Study, “Über Systeme von complexen Zahlen,” Göttingen Nach. (1889), 237–268.Google Scholar
  40. 40.
    M. Suzuki, “The non-existence of a certain type of simple group of odd order,” Proc. A.M.S. 8 (1957), 686–695.CrossRefGoogle Scholar
  41. 41.
    H. Weber, Lehrbuch der Algebra, vol. 2, Vieweg, Braunschweig, 1896.MATHGoogle Scholar
  42. 42.
    K. Weierstrass, “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen,” Göttingen Nach. (1884), 395–414.Google Scholar
  43. 43.
    A. Weil, “Numbers of solutions of equations in finite fields,” Bull. A.M.S. 55 (1949), 497–508; Collected Papers, I, 399–410.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Charles W. Curtis

There are no affiliations available

Personalised recommendations