Skip to main content

Representation Theory of Finite Groups: from Frobenius to Brauer

  • Chapter
Mathematical Conversations
  • 1243 Accesses

Abstract

The representation theory of finite groups began with the pioneering research of Frobenius, Burnside, and Schur at the turn of the century. Their work was inspired in part by two largely unrelated developments which occurred earlier in the nineteenth century. The first was the awareness of characters of finite abelian groups and their application by some of the great nineteenth-century number theorists. The second was the emergence of the structure theory of finite groups, beginning with Galois’ brief outline of the main ideas in the famous letter written on the eve of his death and continuing with the work of Sylow and others, including Frobenius himself.

This article is dedicated to the memory of my friend and collaborator, Irving Reiner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Brauer, Über die Darstellungen von Gruppen in Galoischen Feldern, Actualités Scientifiques et Industrielles 195, Hermann, Paris, 1935.

    Google Scholar 

  2. R. Brauer, “On the representation of a group of order g in the field of gth roots of unity,” Amer. J. Math. 67 (1945), 461–471.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Brauer, “On Artin’s L-series with general group characters,” Ann. of Math. (2)48 (1947), 502–514.

    Article  MathSciNet  Google Scholar 

  4. R. Brauer and C. J. Nesbitt, “On the modular representations of groups of finite order I,” Univ. of Toronto Studies, Math. Ser. 4, 1937.

    Google Scholar 

  5. W. Burnside, Theory of Groups of Finite Order, Cambridge, 1897; Second Edition, Cambridge, 1911.

    Google Scholar 

  6. R. Dedekind, “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen,” Göttingen Nachr. (1885), 141–159.

    Google Scholar 

  7. L. E. Dickson, “On the group defined for any given field by the multiplication table of any given finite group,” Trans. A.M.S. 3 (1902), 285–301.

    Article  MATH  Google Scholar 

  8. L. E. Dickson, “Modular theory of group matrices,” Trans. A.M.S. 8 (1907), 389–398.

    Article  MATH  Google Scholar 

  9. L. E. Dickson, “Modular theory of group characters,” Bull. A.M.S. 13 (1907), 477–488.

    Article  Google Scholar 

  10. P. G. Lejeune Dirichlet, “Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält,” Abh. Akad. d. Wiss. Berlin (1837), 45–81. Werke I, 313–342.

    Google Scholar 

  11. P. G. Lejeune Dirichlet, Vorlesungen ĂĽber Zahlentheorie, 4th ed. Published and supplemented by R. Dedekind, Vieweg, Braunschweig, 1894.

    MATH  Google Scholar 

  12. W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  13. W. Feit, M. Hall, and J. G. Thompson, “Finite groups in which the centralizer of any non-identity element is nilpotent,” Math. Z. 74 (1960), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Feit and J. G. Thompson, “Solvability of groups of odd order,” Pacific J. Math. 13 (1963), 775–1029.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. G. Frobenius, “Über vertauschbare Matrizen,” S’ber. Akad. Wiss. Berlin (1896), 601–614; Ges. Abh. II, 705–718.

    Google Scholar 

  16. F. G. Frobenius,“Über Gruppencharaktere ” S’ber. Akad. Wiss. Berlin (1896), 985–1021; Ges. Abh. Ill, 1–37.

    Google Scholar 

  17. F. G. Frobenius, “Über die Primfactoren der Gruppendeterminante,” S’ber. Akad. Wiss. Berlin (1896), 1343–1382; Ges. Abh. Ill, 38–77.

    Google Scholar 

  18. F. G. Frobenius, “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen,” S’ber. Akad. Wiss. Berlin (1897), 994–1015; Ges. Abh. III, 82–103.

    Google Scholar 

  19. F. G. Frobenius, “Über Relationen zwischen den Charakteren einer Gruppe und denen iher Untergruppen,” S’ber. Akad. Wiss. Berlin (1898), 501–515; Ges. Abh. III, 104–118.

    Google Scholar 

  20. F. G. Frobenius, “Über den Charaktere der symmetrischen Gruppe,” S’ber. Akad. Wiss. Berlin (1900), 516–534; Ges. Abh. III, 148–166.

    Google Scholar 

  21. F. G. Frobenius, “Über die Charaktere der alternirenden Gruppe,” S’ber. Akad. Wiss. Berlin (1901), 303–315; Ges. Abh. III, 167–179.

    Google Scholar 

  22. F. G. Frobenius, “Theorie der hyperkomplexen Grössen,” S’ber. Akad. Wiss. Berlin (1903), 504–537; Ges. Abh. III, 284–317.

    Google Scholar 

  23. C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801; English translation by A. A. Clarke, Yale University Press, New Haven, 1966.

    Google Scholar 

  24. T. Hawkins, “The origins of the theory of group characters,” Archive Hist. Exact Sc. 7 (1971), 142–170.

    Article  MathSciNet  Google Scholar 

  25. T. Hawkins, “New light on Frobenius’ creation of the theory of group characters,” Archive Hist. Exact Sc. 12 (1974), 217–243.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Hawkins, “Hypercomplex numbers, Lie groups, and the creation of group representation theory,” Archive Hist. Exact Sc. 8 (1971), 243–287.

    Article  MathSciNet  Google Scholar 

  27. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1980.

    Google Scholar 

  28. N. Jacobson, Introduction, in EmmyNoether, Ges. Abh., Springer-Verlag, Berlin, 1983; 12–26.

    Google Scholar 

  29. W. Ledermann, “The origin of group characters,” J. Bangladesh Math. Soc. 1 (1981), 35–43.

    MathSciNet  MATH  Google Scholar 

  30. W. Ledermann, “Issai Schur and his school in Berlin,” Bull. London Math. Soc. 15 (1983), 97–106.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Loewy, “Sur les formes quadratiques définies à indéterminées conjuguées de M. Hermite,” Comptes Rendus Acad. Sei. Paris 123 (1896), 168–171.

    MATH  Google Scholar 

  32. H. Maschke, “Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind,” Math. Ann. 52 (1899), 363–368.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. H. Moore, “A universal invariant for finite groups of linear substitutions: with applications in the theory of the canonical form of a linear substitution of finite period,” Math. Ann. 50 (1898), 213–219.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Noether, “Hyperkomplexe Grössen und Darstellungstheorie,” Math. Z. 30 (1929), 641–692; Ges. Abh. 563–992.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Berlin, 1901; Ges. Abh. 1, 1–72.

    Google Scholar 

  36. I. Schur, “Neue Begründung der Theorie der Gruppencharaktere,” S’ber. Akad. Wiss. Berlin (1905), 406–432; Ges. Abh. I, 143–169.

    Google Scholar 

  37. I. Schur, “Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen” S’ber. Akad. Wiss. Berlin (1906), 164–184; Ges. Abh. I, 177–197.

    Google Scholar 

  38. I. Schur, “Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen,” J, reine u. angew. Math. 132 (1907), 85–137; Ges. Abh. I, 198–205.

    MATH  Google Scholar 

  39. E. Study, “Über Systeme von complexen Zahlen,” Göttingen Nach. (1889), 237–268.

    Google Scholar 

  40. M. Suzuki, “The non-existence of a certain type of simple group of odd order,” Proc. A.M.S. 8 (1957), 686–695.

    Article  Google Scholar 

  41. H. Weber, Lehrbuch der Algebra, vol. 2, Vieweg, Braunschweig, 1896.

    MATH  Google Scholar 

  42. K. Weierstrass, “Zur Theorie der aus n Haupteinheiten gebildeten complexen Grössen,” Göttingen Nach. (1884), 395–414.

    Google Scholar 

  43. A. Weil, “Numbers of solutions of equations in finite fields,” Bull. A.M.S. 55 (1949), 497–508; Collected Papers, I, 399–410.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Curtis, C.W. (2001). Representation Theory of Finite Groups: from Frobenius to Brauer. In: Mathematical Conversations. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0195-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0195-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6556-6

  • Online ISBN: 978-1-4613-0195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics