Skip to main content

The Growing Family of Rasch Models

  • Chapter
Essays on Item Response Theory

Part of the book series: Lecture Notes in Statistics ((LNS,volume 157))

Abstract

A family of Rasch models is defined in terms of the prominent properties of all Rasch models, that is, separability, sufficiency, specific objectivity, and latent additivity. It is argued that concepts such as item homogeneity, person homogeneity, and unidimensionality do not hold for all generalizations of the Rasch model (RM). Four directions of generalizing the model are discussed: the multidimensional, the ordinal polytomous, the linear logistic, and the mixture distribution generalization. A hierarchical system of generalized Rasch models is presented. Four out of these eight models are discussed in the literature and can be applied by means of reliable computer software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.

    Article  Google Scholar 

  • Andersen, E.B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573.

    Article  MATH  Google Scholar 

  • Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47, 105–113.

    Article  Google Scholar 

  • Andrich, D. (1991). [Review of the book Latent trait and latent class models]. Psychometrika, 56, 155–168.

    Article  Google Scholar 

  • Andrich, D. (1995). Models for measurement, precision, and the nondichotomization of graded responses. Psychometrika, 60, 7–26.

    Article  MATH  Google Scholar 

  • Bartholomew, D.J. (1987). Latent variable models and factor analysis. London: Griffin.

    MATH  Google Scholar 

  • Bishop, Y.M.M., Fienberg, S.E., & Holland, P.W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Carstensen, C., & Rost, J. (1998). MULTIRA: Ein Programmsystem für mehrdimensionale Rasch-Modelle [MULTIRA: A program system for multidimensional Rasch models]. Kiel: IPN.

    Google Scholar 

  • Cox, D.R. (1970). The analysis of binary data. Methuen: London.

    MATH  Google Scholar 

  • Fischer, G.H. (1972). A measurement model for the effects of mass-media. Acta Psychologica, 36, 207–220.

    Article  Google Scholar 

  • Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 31, 359–374.

    Article  Google Scholar 

  • Fischer, G. (1974). Einführung in die Theorie psychologischer Tests: Grundlagen und Anwendungen [Introduction to mental test theory: Foundations and applications]. Bern: Huber.

    MATH  Google Scholar 

  • Fischer, G.H. (1988). Spezifische Objektivität [Specific objectivity]. In K.D. Kubinger (Hrsg.), Moderne Testtheorie (pp. 87–111). Weinheim: Beltz.

    Google Scholar 

  • Fischer, G.H. (1995). The linear logistic test model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 131–155). New York: Springer-Verlag.

    Google Scholar 

  • Fischer, G.H., & Parzer, P (1991). An extension of the rating scale model with an application to the measurement of treatment effects. Psychometrika, 56, 637–651.

    Article  MATH  Google Scholar 

  • Fischer, G.H., & Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 59, 177–192.

    Article  MATH  Google Scholar 

  • Fischer, G.H., & Ponocny-Seliger, E. (1998). LPCM-WIN: For structural Rasch modeling [Software manual]. Groningen: ProGAMMA.

    Google Scholar 

  • Formann, A.K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Formann, A.K. (1989). Constrained latent class models: Some further applications. British Journal of Mathematical and Statistical Psychology, 42, 37–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Haberman, S.J. (1988). A stabilized Newton-Raphson algorithm for loglinear models for frequency tables derived by indirect observation. In C.C. Clogg (Ed.), Sociological methodology 1988 (pp. 193–211). Washington, DC: American Sociological Association.

    Google Scholar 

  • Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693.

    Article  MATH  Google Scholar 

  • Hicks, L.E. (1970). Some properties of ipsative, normative, and forcedchoice normative measures. Psychological Bulletin, 74, 167–184.

    Article  Google Scholar 

  • Hoijtink, H., & Rooks, G. (1999). Confirmatory factor analysis of items with a dichotomous response format using the multidimensional Rasch model. Psychological Methods, 4, 300–314.

    Article  Google Scholar 

  • Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.

    Article  MATH  Google Scholar 

  • Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 149–176.

    Article  MATH  Google Scholar 

  • Klauer, K.C., & Sydow, H. (1992). Interindividuelle Unterschiede in der Lernfä higkeit: Zur Analyse von Lernprozessen bei Kurzzeitlerntests [Interindividual differences in learning ability: Analyzing learning by means of short-term learning tests]. Zeitschrift für Differentielle und Diagnostische Psychologie, 13, 175–190.

    Google Scholar 

  • Klauer, K.C., & Sydow, H. (2001). Modeling learning in short-term learning tests. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 69–87). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Langeheine, R., & Rost, J. (1988). Latent trait and latent class models. New York: Plenum.

    Google Scholar 

  • Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.

    MATH  Google Scholar 

  • Linacre, J.M. (1989). Many-faceted Rasch measurement. Chicago: MESA Press.

    Google Scholar 

  • Lindsay, B., Clogg, C.C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Luce, R.D., & Tukey, J.W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement. Journal of Mathematical Psychology, 1, 1–27.

    Article  MATH  Google Scholar 

  • Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 41, 149–174.

    Article  Google Scholar 

  • Meiser, T. (1996). Loglinear Rasch models for the analysis of stability and change. Psychometrika, 61, 629–645.

    Article  MATH  Google Scholar 

  • Micko, H.-C. (1970). Eine Verallgemeinerung des Meßmodells von Rasch mit einer Anwendung auf die Psychophysik der Reaktionen [A generalization of Rasch’s measurement model with an application to the psychophysics of reactions]. Psychologische Beiträge, 12, 4–22.

    Google Scholar 

  • Mislevy, R.J., & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195–215.

    Article  Google Scholar 

  • Mokken, R.J. (1971). A theory and procedure of scale analysis: With applications in political research. The Hague: Mouton.

    Book  Google Scholar 

  • Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 3–14). New York: Springer-Verlag.

    Google Scholar 

  • Müller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165–181.

    Article  Google Scholar 

  • Muraki, E., & Carlson, J.E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73–90.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research. (Expanded edition, 1980. Chicago: The University of Chicago Press.)

    Google Scholar 

  • Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Theory of Probability (Vol. IV, pp. 321–333). Berkeley: University of California Press.

    Google Scholar 

  • Roskam, E.E., & Jansen, P.G.W. (1989). Conditions for Rasch-dichotomizability of the unidimensional polytomous Rasch model. Psychometrika, 54, 317–333.

    Article  Google Scholar 

  • Rost, J. (1988). Measuring attitudes with a threshold model drawing on a traditional scaling concept. Applied Psychological Measurement, 12, 397–409.

    Article  Google Scholar 

  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.

    Article  Google Scholar 

  • Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75–92.

    Article  Google Scholar 

  • Rost, J. (1996). Lehrbuch Testtheorie, Testkonstruktion [Textbook test theory, test construction]. Bern: Huber.

    Google Scholar 

  • Rost, J. (1999). Was ist aus dem Rasch-Modell geworden? [Where has the Rasch model gone?] Psychologische Rundschau, 50, 140–156.

    Article  Google Scholar 

  • Rost, J., & Carstensen, C. (in press). Multidimensional Rasch measurement via item component models and faceted designs. Applied Psychological Measurement.

    Google Scholar 

  • Rost, J., & Langeheine, R. (1997). A guide through latent structure models for categorical data. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 13–37). Münster: Waxmann.

    Google Scholar 

  • Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one dimension. Psychometrika, 48, 259–267.

    Article  MATH  Google Scholar 

  • Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23–30.

    MathSciNet  MATH  Google Scholar 

  • Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.

    Article  MATH  Google Scholar 

  • Verhelst, N.D., & Glas, C.A.W. (1995a). Dynamic generalization of the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch Models: Foundations, recent developments, and applications (pp. 181–201). New York: Springer-Verlag.

    Google Scholar 

  • Verhelst, N.D., & Glas, C.A.W. (1995b).The one parameter logistic model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 215–237). New York: Springer-Verlag.

    Google Scholar 

  • Vermunt, J.K. (1996). LEM: A general program for the analysis of categorical data [Computer software]. Tilburg University, Department of Methodology, The Netherlands.

    Google Scholar 

  • Von Davier, M. (1995). Mixtures of polytomous Rasch models and latent class models for ordinal variables. In F. Faulbaum & W. Bandilla (Eds.), Soß stat 95—Advances in Statistical Software 5. Stuttgart: Lucius & Lucius.

    Google Scholar 

  • Von Davier, M. (1998). WINMIRA: A WINDOWS program for mixed Rasch models [Computer software]. Kiel: IPN.

    Google Scholar 

  • Wilson, M., & Wang, W. (1995). Complex composites: Issues that arise in combining different modes of assessment. Applied Psychological Measurement, 19, 51–71.

    Article  Google Scholar 

  • Wright, B.D., & Masters, G.N. (1982). Rating scale analysis: Rasch measurement. Chicago: Mesa Press.

    Google Scholar 

  • Wu, M., Adams, R.J., & Wilson, M. (1997). ConQuest—Generalised item response modelling software (Draft Release 2) [Software manual]. Camberwell: Australian Council for Educational Research.

    Google Scholar 

  • Yamamoto, K. (1989). A hybrid model of IRT and latent class models (ETS Research Report RR-89-41). Princeton, NJ: Educational Testing Service.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rost, J. (2001). The Growing Family of Rasch Models. In: Boomsma, A., van Duijn, M.A.J., Snijders, T.A.B. (eds) Essays on Item Response Theory. Lecture Notes in Statistics, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0169-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0169-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95147-8

  • Online ISBN: 978-1-4613-0169-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics