Two-Level Nonparametric Scaling for Dichotomous Data

  • Tom A. B. Snijders
Part of the Lecture Notes in Statistics book series (LNS, volume 157)


This chapter considers a two-level design where the objects to be scaled are the higher-level units. Nested within each object are lowerlevel units, called subjects, and a set of dichotomous items is administered to each subject. The subjects are regarded as strictly parallel tests for the objects. Examples are the scaling of teachers on the basis of their pupils’ responses, or of neighborhoods on the basis of responses by inhabitants. A two-level version of the nonparametric scaling method first proposed by (1971) is elaborated upon. The probabilities of positive responses to the items are assumed to be increasing functions of the value on a latent trait. The latent trait value for each subject is composed of an objectdependent value and a subject-dependent deviation from this value. The consistency of responses within, but also between objects is expressed by two-level versions of Loevinger’s H -coefficients. The availability of parallel tests is used to calculate a reliability coefficient.


Item Response Theory Reliability Coefficient Latent Trait Classroom Climate Item Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bosker, R.J., & Hendriks, M.A. (1997). Betrouwbaarheid, validiteit en bruikbaarheid van een Instrumentarium voor zelfevaluatie door basisscholen [Reliability, validity, and usability of instruments for school self-evaluation in primary education]. Enschede: Universiteit Twente, OCTO.Google Scholar
  2. Bryk, A.S., & Raudenbush, S.W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.Google Scholar
  3. Fischer, G.H., & Molenaar, I.W. (1995). Rasch models: Foundations, recent developments, and applications. New York: Springer-Verlag.MATHGoogle Scholar
  4. Gibbons, R.D., & Hedeker, D. (1997). Random effects probit and logistic regression models for three-level data. Biometrics, 53, 1527–1537.MATHCrossRefGoogle Scholar
  5. Goldstein, H. (1995). Multilevel statistical models (2nd ed.). London: Arnold.Google Scholar
  6. Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693.MATHCrossRefGoogle Scholar
  7. Jansson, I., & Spreen, M. (1998). The use of local networks in a study of heroin users: Assessing average local networks. Bulletin de Méthodologie Sociologique, 59, 49–61.CrossRefGoogle Scholar
  8. Lewis, C. (2001). Expected response functions. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 163–171). New York: Springer-Verlag.CrossRefGoogle Scholar
  9. Meijer, R.R., Sijtsma, K., & Molenaar, I.W. (1995). Reliability estimation for single dichotomous items based on Mokken’s IRT model. Applied Psychological Measurement, 19, 323–335.CrossRefGoogle Scholar
  10. Mokken, R.J. (1971). A theory and procedure of scale analysis: With applications in political research. The Hague: Mouton.CrossRefGoogle Scholar
  11. Mokken, R.J. (1997). Nonparametric models for dichotomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 351–367). New York: Springer-Verlag.Google Scholar
  12. Mokken, R.J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417–430.CrossRefGoogle Scholar
  13. Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 369–380). New York: Springer-Verlag.Google Scholar
  14. Molenaar, I.W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows: A program for Mokken scale analysis for polytomous items. Version 5.0 [Software manual]. Groningen: ProGAMMA.Google Scholar
  15. Raudenbush, S.W., & Sampson, R.J. (1999). “Ecometrics”: Toward a science of assessing ecological settings, with applications to the systematic social observation of neighborhoods. In M.E. Sobel & M.P. Becker (Eds.), Sociological methodology 1999, (pp. 1–41). Boston, MA: Blackwell.Google Scholar
  16. Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22, 3–31.MathSciNetCrossRefGoogle Scholar
  17. Sijtsma, K., & Van der Ark, L.A. (2001). Progress in NIRT analysis of polytomous item scores: Dilemmas and practical solutions. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 297–318). New York: Springer-Verlag.CrossRefGoogle Scholar
  18. Snijders, T.A.B., & Bosker, R.J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Tom A. B. Snijders
    • 1
  1. 1.Department of Statistics and Measurement TheoryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations