Skip to main content

Capacity-Achieving Sequences

  • Conference paper
Codes, Systems, and Graphical Models

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 123))

Abstract

A capacity-achieving sequence of degree distributions for the erasure channel is, roughly speaking, a sequence of degree distributions such that graphs sampled uniformly at random satisfying those degree constraints lead to codes that perform arbitrarily close to the capacity of the erasure channel when decoded with a simple erasure decoder described in the paper. We will prove a necessary property called flatness for a sequence of degree distributions to be capacity-achieving, and will comment on possible applications to the design of capacity-achieving sequences on other communication channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Elias. Coding for two noisy channels. In Information Theory, Third London Symposium, pages 61–76, 1955.

    Google Scholar 

  2. R.G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.

    Google Scholar 

  3. M. Luby, M. Mitzenmacher, and M.A. Shokrollahi. Analysis of random processes via and-or tree evaluation. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 364–373, 1998.

    Google Scholar 

  4. M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Analysis of low density codes and improved designs using irregular graphs. In Proceedings of the 30th Annual A CM Symposium on Theory of Computing, pages 249–258, 1998.

    Google Scholar 

  5. M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Improved low-density parity-check codes using irregular graphs and belief propagation. In Proceedings 1998 IEEE International Symposium on Information Theory, page 117, 1998.

    Google Scholar 

  6. M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In Proceedings of the 29th annual ACM Symposium on Theory of Computing, pages 150–159, 1997.

    Google Scholar 

  7. D.J.C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory, 45:399–431, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Richardson, M.A. Shokrollahi, and R. Urbanke. Design of provably good low-density parity-check codes. IEEE Trans. Inform. Theory (submitted), 1999.

    Google Scholar 

  9. T. Richardson and R. Urbanke. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inform. Theory (submitted), 1998.

    Google Scholar 

  10. M.A. Shokrollahi. New sequences of linear time erasure codes approaching the channel capacity. In Proceedings of AAECC-13, M. Fossorier, H. Imai, S. Lin, and A. Poli eds, number 1719 of Lecture Notes in Computer Science, pages 65–76, 1999.

    Google Scholar 

  11. M. Sipser and D. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42:1710–1722, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inform. Theory, 42:1723–1731, 1996.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Shokrollahi, M.A. (2001). Capacity-Achieving Sequences. In: Marcus, B., Rosenthal, J. (eds) Codes, Systems, and Graphical Models. The IMA Volumes in Mathematics and its Applications, vol 123. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0165-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0165-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95173-7

  • Online ISBN: 978-1-4613-0165-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics