Skip to main content

Photochemistry of Organophosphorus Insecticides

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 172))

Abstract

Photochemical reactions of pesticides in the environment have been recognized as an important factor contributing to the fate of those xenobiotics. As the fate of the parent molecule does not necessarily imply the fate of the active structures, it is important to clarify their photochemical way of decomposition because the more comprehensive the knowledge of their residues in the environment, the better their risk assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdou WM, Born L, Hulpke H, Mahran MR, Sidky MM, Wamhoff H (1987a) Photochemistry of pesticides. 7. Regioselective photodimerization of O,O-diethyl O-(3-chloro-4-methylcoumarin-7-yl) thiophosphate (coumaphos). Phosphorus Sulfur 29: 179–185.

    CAS  Google Scholar 

  • Abdou WM, Sidky MM, Wamhoff H (1987b) Photochemistry of pesticides. 10. Photo-degradation of O,O-diethyl S-(3,4-dmydro-4-oxobenzo[d][1,2,3]triazin-3-lmethyl phos-phorodithioate (azinphos-ethyl). Z Naturforsch 42:907–910.

    CAS  Google Scholar 

  • Abdou WM, Sidky MM, Wamhoff H (1988) Photochemistry of pesticides. 9. Further studies on the photochemistry of O,O-diethyl O-(3-chloro-4-methyl-2-oxo-2H-benzopyran-7-yl) thiophosphate (coumaphos). J Agric Food Chem 36:1291–1294.

    CAS  Google Scholar 

  • Addison JB (1981) Vapor phase photochemistry of fenitrothion and aminocarb. Bull Environ Contam Toxicol 27:250–255.

    PubMed  CAS  Google Scholar 

  • Allmaier GM, Schmid ER (1985) Effects of light on the organophosphorus pesticides bromophos and iodofenphos and their main degradation products examined in rainwater and on soil surface in a long-term study. J Agric Food Chem 33:90–92.

    CAS  Google Scholar 

  • Allmaier GM, Fogy I, Heinisch G, Schmid ER (1984) Photolysis of three organophosphorus pesticides in rain water and on soil surface. Anal Chem Symp Ser 21:115–126.

    CAS  Google Scholar 

  • Andlauer W (1992) Modellreaktionen zum photochemischen Verhalten des Insektizids Parathion auf Pflanzenoberflächen. Thesis, University of Karlsruhe, Germany.

    Google Scholar 

  • Banerjee K, Dureja P (1995) Photostabilization of quinalphos by crystal violet on the surface of kaolinite and palygorskite. Pestic Sci 43:333–337.

    CAS  Google Scholar 

  • Barcelo D (1993) Techniques and instrumentation in analytical chemistry. In: Barcelo D (ed) Environmental Analysis. Techniques, Applications and Quality Assurance. Elsevier, Amsterdam, pp 149–180.

    Google Scholar 

  • Barcelo D, Durand G, De Bertrand (1993a) Photodegradation of the organophosphorus pesticides chlorpyrifos, fenamiphos and vamidothion in water. Toxicol Environ Chem 38(3–4):183–199.

    CAS  Google Scholar 

  • Barcelo D, Durand G, De Bertrand N, Albaiges J (1993b) Determination of aquatic photodegradation products of selected pesticides by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Sci Total Environ 132:283–296.

    CAS  Google Scholar 

  • Benner P (1972) Approximate values of intensity of natural ultraviolet radiation for different amounts of atmospheric ozon. DAJA 37–68-C-1017. U.S. Army Report, Davos Platz, Switzerland.

    Google Scholar 

  • Bossan D, Wortham H, Masclet P (1995) Atmospheric transport of pesticides adsorbed on aerosols. I. Photodegradation in simulated atmosphere. Chemosphere 30:21–29.

    CAS  Google Scholar 

  • Brewer DG, Wood G, Unger I (1974) Photodecomposition of fenitrothion. [O,O-di-methyl-O-(3-methyl-4-nitrophenol)phosphorothioate]. Chemosphere 3:91–95.

    CAS  Google Scholar 

  • Buckland SJ, Davidson RS (1987) The photodegradation of parathion and chlormephos. Pestic Sci 19:61–66.

    CAS  Google Scholar 

  • Bunce NJ, Schoch JP, Zerner MC (1977) Photorearrangement of azoxybenzene to 2-hydroxyazobenzene. Evidence for electrophilic substitution by oxygen. J Am Chem Soc 99:7986–7991.

    CAS  Google Scholar 

  • Burkhard N, Guth JA (1979) Photolysis of organophosphorus insecticides on soil surfaces. Pestic Sci 10:313–319.

    CAS  Google Scholar 

  • Burkhard N, Eberle DO, Guth JA (1975) Model systems for studying the environmental behavior of pesticides. Environ Qual Saf III (Suppl):203–213.

    Google Scholar 

  • Cabras P, Angioni A, Garau VL, Melis M, Pirisi FM, Minelli EV (1997) Effect of epicu-ticular waxes of fruits on the photodegradation of fenthion. J Agric Food Chem 45: 3681–3683.

    CAS  Google Scholar 

  • Calvert JG, Pitts JN (1966) Photochemistry. Wiley, New York, pp 1–830.

    Google Scholar 

  • Castillo M, Domingues R, Alpendurada MF, Barcelo D (1997) Persistence of selected pesticides and their phenolic transformation products in natural waters using off-line liquid solid extraction followed by liquid chromatographic techniques. Anal Chim Acta 353:133–142.

    CAS  Google Scholar 

  • Chou S-S, Eto M (1980) Effects of paddy water and some photosensitizers on the photolysis of the fungicide isoprothiolane. J Environ Sci Health B15:135–146.

    CAS  Google Scholar 

  • Choughdry GG, Webster GRB (1985) Protocol guidelines for the investigation of photochemical fate of pesticides in water, air, and soils. Residue Rev 96:79–136.

    Google Scholar 

  • Chukwudebe A, March RB, Othman M, Fukuto TR (1989) Formation of trialkyl phos-phorothioate esters from organophosphorus insecticides after exposure to either ultraviolet light or sunlight. J Agric Food Chem 37:539–545.

    CAS  Google Scholar 

  • Clements P, Wells CHJ (1992) Kinetic and thermodynamic aspects of the dye-sensitized photo-oxidation of bioresmethrin and related compounds. Pestic Sci 35:305–308.

    CAS  Google Scholar 

  • Cook JW, Pugh ND (1957) Study of cholinesterase-inhibiting decompn. products of parathion formed by ultraviolet light. J Assoc Offic Anal Chem 40:277.

    CAS  Google Scholar 

  • Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220:711–712.

    PubMed  CAS  Google Scholar 

  • Crosby DG (1969) Experimental approaches to pesticide photodecomposition. Residue Rev 25:1–12.

    PubMed  CAS  Google Scholar 

  • Crosby DG, Moilanen KW (1974) Vapor-phase photodecomposition of aldrin and dieldrin. Arch Environ Contam Toxicol 2:62–74.

    PubMed  CAS  Google Scholar 

  • Crosby DG, Wong MK, Plimmer JR, Woolson EA (1971) Photodecomposition of chlorinated dibenzo-p-dioxins. Science 173:748–749.

    PubMed  CAS  Google Scholar 

  • Crosby DG, Leffingwell JT, Moilanen KW (1975) Transformations of environmental contaminants by light. Environ Qual Saf 4:175–178.

    PubMed  CAS  Google Scholar 

  • Dejonckheere WP, Kips RH (1974) Photodecomposition of methidathion. J Agric Food Chem 22:959–968.

    PubMed  CAS  Google Scholar 

  • Dilling WL, Lickly LC, Lickly TD, Murphy PG, McKellar RL (1984) Organic photochemistry. 19. Quantum yields for O,O-diethyl O-(3, 5,6-trichloro-2-pyridinyl) phosphorothioate (chlorpyrifos) and 3,5,6-trichloro-2-pyridinol in dilute aqueous solutions and their environmental phototransformation rates. Environ Sci Technol 18:540–543.

    CAS  Google Scholar 

  • Doster DE (1982) The photolysis of organophosphorus pesticides. Dissertation, Miami University, Oxford.

    Google Scholar 

  • Draper WM (1985) Determination of wavelength-averaged, near-uv quantum yields for environmental chemicals. Chemosphere 14:1195–1203.

    CAS  Google Scholar 

  • Draper WM, Casida JE (1985) Nitroxide radical adducts of nitrodiphenyl ether herbicides and other nitroaryl pesticides with unsaturated cellular lipids. J Agric Food Chem 33: 103–108.

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1981) Hydrogen peroxide and hydroxyl radical: intermediates in indirect photolysis reactions in water. J Agric Food Chem 29:699–702.

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1983) The photochemical generation of hydrogen peroxide in natural waters. Arch Environ Contam Toxicol 12:121–126.

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1984) Solar photooxidation of pesticides in dilute hydrogen peroxide. J Agric Food Chem 32:231–237.

    CAS  Google Scholar 

  • Dulin D, Mill T (1982) Development and evaluation of sunlight actinometers. Environ Sci Technol 16:815–820.

    PubMed  CAS  Google Scholar 

  • Durand G, Barcelo D, Albaiges J, Mansour M (1990) Utilization of liquid chromatography in aquatic photodegradation studies of pesticides: a comparison between distilled water and seawater. Chromatographia 29:120–124.

    CAS  Google Scholar 

  • Durand G, Barcelo D, Albaiges J, Mansour M (1991a) On the photolysis of selected pesticides in the aquatic environment. Toxicol Environ Chem 31–32:55–62.

    Google Scholar 

  • Durand G, De Bertrand N, Barcelo D (1991b) Applications of thermospray liquid chromatography-mass spectrometry in photochemical studies of pesticides in water. J Chromatogr 554:233–250.

    CAS  Google Scholar 

  • Durand G, Mansour M, Barcelo D (1992) Identification and determination of fenitrothion photolysis products in water-methanol by gas chromatography-mass spectrometry. Anal Chim Acta 262:167–178.

    CAS  Google Scholar 

  • Durand G, Abad JL, Sanchez-Baeza F, Messeguer A, Barcelo D (1994) Unequivocal identification of compounds formed in the photodegradation of fenitrothion in water/ methanol and proposal of selected transformation pathways. J Agric Food Chem 42: 814–821.

    CAS  Google Scholar 

  • Dureja P, Walia S, Tanwar RS, Mukerjee SK (1987) Triethylamine induced photolysis of endosulfan. Toxicol Environ Chem 15:217–222.

    CAS  Google Scholar 

  • Dureja P, Walia S, Mukerjee SK (1988) Multiphase photodegradation of quinalphos. Pestic Sci 22:287–295.

    CAS  Google Scholar 

  • Dureja P, Walia S, Mukerjee SK (1989) Photodecomposition of isofenphos (O-ethyl O-2-isopropoxycarbonyl-phenyl) isopropylphosphoroamidothioate). Toxicol Environ Chem 19:187–192.

    CAS  Google Scholar 

  • El-Refai A, Hopkins TL (1966) Parathion absorption, translocation, and conversion to paraoxon in bean plants. J Agric Food Chem 14:588–592.

    CAS  Google Scholar 

  • Endo S, Mintarsih TH, Kazano H (1985) Disappearance of diazinon, isoxathion and cartap applied to rice plants. Kyushu Byogaichu Kenkyukaiho 31:115–118.

    CAS  Google Scholar 

  • Erndt A, Polaczek E (1983) Photochemical oxidation of chlorfenvinphos. O-1-(2’,4’-Dichlorophenyl)-2-chlorovinyl-O,O-diethyl phosphate. Pestycydy (Warsaw) (3–4): 17–30 [CA 101:186110].

    Google Scholar 

  • Erndt A, Polaczek E (1984) The cis-trans photoisomerization of chlorfenvinphos (0–1-(2′,4′-dichlorophenyl)-2-chlorovinyl O,O-diethyl phosphate) in n-hexane and acetone solutions. Zesz Nauk Akad Roln im H Kollataja Krakowie 24:3–13.

    CAS  Google Scholar 

  • Erndt A, Adamczyk W, Karolczyk-Kostuch S, Szymonska J (1980) Photochemical reactions of chlorfenvinphos. Part I. Photodegradation of chlorfenvinphos deposited on silica gel and on soil. Zesz Nauk Akad Roln im H Kollataja Krakowie 19:3–20.

    CAS  Google Scholar 

  • Erndt A, Karolczyk-Kostuch S, Szymonska J (1983) Photochemical reactions of chlorfenvinphos. Part II. Effect of chlorfenvinphos photolysis on its deactivation in deposits of insecticidal preparations. Zesz Nauk Akad Roln im H Kollataja Krakowie 22: 3–16.

    CAS  Google Scholar 

  • Faust SD, Gomaa HM (1972) Chemical hydrolysis of some organic phosphorus and carbamate pesticides in aquatic environments. Environ Lett 3:171–201.

    PubMed  CAS  Google Scholar 

  • Fest CH, Schmidt KJ (1982) Organophosphorus insecticides. In: Buechel KH (ed) Chemistry of pesticides. John Wiley & Sons, New York, pp 48–125.

    Google Scholar 

  • Fest Ch, Schmidt KJ (1970) Insektizide Phosphorsaeureester. In: Wegler R (ed) Chemie der Pflanzenschutz- und Schaedlingsbekaempfungsmittel. Band 1. Springer Verlag Berlin, New York, pp 246–453.

    Google Scholar 

  • Floesser H (1991) Modellreaktionen zur Photochemie von Folpet, Captan und Captafol auf Pflanzenoberflächen. Thesis, University of Karlsruhe, Germany.

    Google Scholar 

  • Floesser-Mueller H, Schwack W (1995) Fungicides and photochemistry. In: Cheremisinoff PN (ed) Encyclopedia of Environmental Control Technology, Vol. 7. Gulf, Houston, TX, pp 561–592.

    Google Scholar 

  • Fogy I, Allmaier GM, Schmid ER (1983) Thin layer chromatography/mass spectrometry without substance elution and gas chromatography in the study of organophosphorus pesticides metabolism. Int J Mass Spectrom Ion Phys 48:319–322.

    CAS  Google Scholar 

  • Frawley JP, Cook JW, Blake R, Fitzhugh OG (1958) Effect of light on chemical and biological properties of parathion. J Agric Food Chem 6:28–30.

    CAS  Google Scholar 

  • Fujii Y, Asaka S, Misato T (1979) Photodegradation of dipropyl 4-(methylthio)phenyl phosphate (propaphos, Kayaphos). Nippon Noyaku Gakkaishi 4:361–366.

    CAS  Google Scholar 

  • Gal E, Aires P, Chamarro E, Esplugas S (1992) Photochemical degradation of parathion in aqueous solutions. Water Res 26:911–915.

    CAS  Google Scholar 

  • George MV, Bhat V (1979) Photooxygenations of nitrogen heterocycles. Chem Rev 79: 447–478.

    CAS  Google Scholar 

  • Gilbert A, Baggot J (1991) Essentials of Molecular Photochemistry. Blackwell, Oxford.

    Google Scholar 

  • Giovanoli-Jakubczak T, Fitak B, Chodkowski J (1971) The uv photolysis of dipterex and DDVP. Rocz Chem 45:689–694.

    CAS  Google Scholar 

  • Goedicke HJ, Otto H (1985) Photolytic stability and residue behavior of Fenazox on leaf surfaces. Z Gesamte Hyg Ihre Grenzgeb 31:466–469.

    CAS  Google Scholar 

  • Gohre K, Miller GC (1983) Singlet oxygen generation on soil surfaces. J Agric Food Chem 31:1104–1108.

    CAS  Google Scholar 

  • Gohre K, Miller GC (1985) Photochemical generation of singlet oxygen on non-transition-metal oxid surfaces. J Chem Soc Faraday Trans I 81:793–800.

    Google Scholar 

  • Gohre K, Miller GC (1986) Photooxidation of thioether pesticides on soil surfaces. J Agric Food Chem 34:709–713.

    CAS  Google Scholar 

  • Greenhalgh R, Marshall WD (1976) Ultraviolet irradiation of fenitrothion and the synthesis of the photolytic oxidation products. J Agric Food Chem 24:708–713.

    PubMed  CAS  Google Scholar 

  • Grunwell JR, Erickson RH (1973) Photolysis of parathion (O,O-diethyl-O-(4-nitrophenyl)thiophosphate). New products. J Agric Food Chem 21:929–931.

    PubMed  CAS  Google Scholar 

  • Haque A, Weisgerber I, Klein AW (1976) Buturon-14C residue complex in wheat plants. Chemosphere 3:167–172.

    Google Scholar 

  • Hassall KA (1990) Organophosphorus insecticides. In: The biochemistry and uses of pesticides: structure, metabolism, mode of action and uses in crop protection. 2nd edn. VCH Verlagsgesellschaft, Weinheim, Germany, pp 81–123.

    Google Scholar 

  • Hebert VR, Geddes JD, Mendosa J, Miller GC (1998) Gas-phase photolysis of phorate, a phosphorothioate insecticide. Chemosphere 36:2057–2066.

    CAS  Google Scholar 

  • Hebert VR, Miller GC (1990) Depth dependence of direct and indirect photolysis on soil surfaces. J Agric Food Chem 38:913–918.

    CAS  Google Scholar 

  • Hicke K, Thiemann W (1987) The decomposition of selected phosphoric acid esters by UV irradiation. Vom Wasser 69:85–93.

    CAS  Google Scholar 

  • Hirahara Y, Sayato Y, Nakamuro K (1998) Studies on photochemical behaviors of pesticides in environment. Jpn J Toxicol Environ Health 44:451–461.

    CAS  Google Scholar 

  • Hoffman R, Wells P, Morrison H (1971) Organic photochemistry. XII. Further studies on the mechanism of coumarin photodimerization, observation of an unusual heavy atom effect. J Org Chem 36:102–108.

    PubMed  CAS  Google Scholar 

  • Horspool W, Armesto D (1993) Organic Photochemistry: A Comprehensive Treatment. Paramount, Englewood Cliffs, NJ.

    Google Scholar 

  • Hua R, Yue Y, Tang F, Li X, Fan D (1997) Effects of four pesticides on photolysis of three pyrethroid insecticides under three illumination sources. Zhongguo Huanjing Kexue 17:72–75.

    CAS  Google Scholar 

  • Huang J, Mabury SA (1998) Reaction pathways of the carbonate radical towards aromatic sulfur containing compounds. In: Clement R, Burk B (eds) EnviroAnal; Proc Int. Conf Chem Meas Monit Environ, 2nd, Conference Secretariat, Chem Dep, Carleton Univ, Ottawa, pp 695–700.

    Google Scholar 

  • Huang J, Mabury SA (2000) The role of carbonate radical in limiting the persistence of sulfur-containing chemicals in sunlit natural waters. Chemosphere 41:1775–1782.

    PubMed  CAS  Google Scholar 

  • Huber R, Otto S (1983) Bound pesticide residues in plants. In: Miyamoto J, Kearney PC (eds) IUPAC Pesticide Chemistry: Human Welfare and the Environment. Pergamon Press, Oxford, pp 357–362.

    Google Scholar 

  • Hueskes R, Levsen K (1994) Photochemical transformation of pesticides in the atmosphere: Identification and quantification of the photoproducts. In: Transp. Transform. Pollut. Troposphere, Proc. EUROTRAC Symp., 3rd. SPB, The Hague, Netherlands, pp 167–170.

    Google Scholar 

  • Ivie GW, Bull DL (1976) Photodegradation of O-ethyl O-[4-(methylthio)phenyl] S-propyl phosphorodithioate (BAY NTN 9306). J Agric Food Chem 24:1053–1057.

    PubMed  CAS  Google Scholar 

  • Ivie GW, Casida JE (1971a) Photosensitizers for the accelerated degradation of chlorinated cyclodienes and other insecticide chemicals exposed to sunlight on bean leaves. J Agric Food Chem 19:410–416.

    CAS  Google Scholar 

  • Ivie GW, Casida JE (1971b) Sensitized photodecomposition and photosensitizer activity of pesticide chemicals exposed to sunlight on silica gel chromatoplates. J Agric Food Chem 19:405–409.

    CAS  Google Scholar 

  • Jahn C, Zorn H, Peterson A, Schwack W (1999) Structure-specific detection of plant cuticle bound residues of chlorothalonil by ELISA. Pestic Sci 55:1167–1176.

    CAS  Google Scholar 

  • Jensen-Korte U, Anderson C, Spiteller M (1987) Photodegradation of pesticides in the presence of humic substances. Sci Total Environ 62:335–340.

    PubMed  CAS  Google Scholar 

  • Joiner RL (1971) Photoalteration products of parathion. PhD Dissertation, Mississippi State University, Mississippi State, MS.

    Google Scholar 

  • Joiner RL, Baetcke KP (1973) Parathion: persistence on cotton and identification of its photoalteration products. J Agric Food Chem 21:391–396.

    PubMed  CAS  Google Scholar 

  • Joiner RL, Baetcke KP (1974) Identification of the photoalteration products formed from parathion by ultraviolet light. J Assoc Offic Anal Chem 57:408–415.

    CAS  Google Scholar 

  • Joiner RL, Chambers HW, Baetcke KP (1973) Comparative inhibition of boll weevil, golden shiner, and white rat cholinesterases by selected photoalteration products of parathion. Pestic Biochem Physiol 2:371–376.

    CAS  Google Scholar 

  • Kagan J (1993) Organic Photochemistry: Principles and Applications. Academic Press, London.

    Google Scholar 

  • Khan SU (1980) Plant uptake of unextracted (bound) residues from an organic soil treated with prometryn. J Agric Food Chem 28:1096–1098.

    PubMed  CAS  Google Scholar 

  • Khan SU (1982) Bound pesticide residues in soil and plants. Residue Rev 84:1–25.

    PubMed  CAS  Google Scholar 

  • Klein AW, Scheunert I (1982) Bound pesticide residues in soil, plants and food with particular emphasis on the application of nuclear techniques. In: Agrochemicals: Fate in Food and the Environment. International Atomic Energy Agency, Vienna, pp 177–205.

    Google Scholar 

  • Klisenko MA, Pis’mennaya MV (1979) Photochemical conversion of organophosphorus pesticides in the air. Gig Tr Prof Zabol (6):56–58 [CA 94:126596].

    PubMed  Google Scholar 

  • Klisenko MA, Girenko DB, Leika ZA (1987) Photochemical transformation of phospho-nates. Agrokhimiya (10):87–95 [CA 108:33575].

    Google Scholar 

  • Koivistoinen P, Meriläinen M (1962) Paper chromatographic studies on the effect of ultraviolet light on parathion and its derivatives. Acta Agric Scand 12:267–276.

    CAS  Google Scholar 

  • Koller LR (1965) Ultraviolet Radiation, 2nd Ed, Wiley, New York.

    Google Scholar 

  • Koshioka M, Kanazawa J, Murai T (1986) Photodegradation of an insecticide, diisopropyl 4-(methylthio)phenyl phosphate, by xenon lamp. Nippon Noyaku Gakkaishi 11: 557–562.

    CAS  Google Scholar 

  • Kovacs GH (1985) High-performance liquid chromatographic analysis of the photodegradation products of phosmethylan. J Chromatogr 322:265–266.

    PubMed  CAS  Google Scholar 

  • Kovacs-Huber G (1985a) Environmental degradation of phosmethylan by model experiments. Hung J Ind Chem 13:449–455.

    CAS  Google Scholar 

  • Kovacs-Huber G (1985b) Photodecomposition of phosmethylan in model experiments. Nehezvegyip Kut Intez Kozl 16:103–119.

    CAS  Google Scholar 

  • Kromer T, Ophoff H, Fuehr F (1999) Photodegradation and volatilization of parathionmethyl on glass and soil dust under laboratory conditions. In: Hum Environ Exposure Xenobiot, Proc Symp Pestic Chem, 11th, Del Re AAM (ed), Goliardica Pavese (pub), Pavia, Italy, pp 363–374.

    Google Scholar 

  • Ku CC, Kapoor IP, Stout SJ, Rosen JD (1979) Photodegradation of Cytrolane (mephosfolan) systemic insecticide in the aquatic environment using carbon-13 as a mass tracer. J Agric Food Chem 27:1046–1050.

    CAS  Google Scholar 

  • Ku Y, Chang JL, Cheng SC (1998) Effect of solution pH on the hydrolysis and photolysis of diazinon in aqueous solution. Water, Air, Soil Pullut 108:445–456.

    CAS  Google Scholar 

  • Kurtz DA (1990) Long-Range Transport of Pesticides. Lewis, Chelsea, MI.

    Google Scholar 

  • Larson RA, Ellis DD, Ju HL, Marley KA (1989) Ravin-sensitized photodecomposition of anilines and phenols. Environ Toxicol Chem 8:1165–1170.

    CAS  Google Scholar 

  • Lemaire J, Campbell I, Hulpke H, Guth JA, Merz W, Philp J, von Waldow C (1982) An assessment of test methods for photodegradation of chemicals in the environment. Chemosphere 11:119–164.

    CAS  Google Scholar 

  • Lemaire J, Guth JA, Klais O, Leahey J, Merz W, Philp J, Wilmes R, Wolff CJM (1985) Ring test of a method for assessing the phototransformation of chemicals in water. Chemosphere 14:53–77.

    CAS  Google Scholar 

  • Liang TT, Lichtenstein EP (1972) Effects of light, temperature, and pH on the degradation of azinphosmethyl. J Econ Entomol 65:315–321.

    PubMed  CAS  Google Scholar 

  • Liang TT, Lichtenstein EP (1976) Effects of soils and leaf surfaces on the photodecomposition of [14C]azinphosmethyl. J Agric Food Chem 24:1205–1210.

    PubMed  CAS  Google Scholar 

  • Lores EM, Sovocool GW, Harless RL, Wilson NK, Moseman RF (1978) A new metabolite of chlorpyrifos: isolation and identification. J Agric Food Chem 26:118–122.

    PubMed  CAS  Google Scholar 

  • Mahran MR, Abdou WM, Sidky MM, Wamhoff H (1986) Photochemistry of pesticides. VII. Photolysis of O,O-diethyl-O-(3-chloro-4-methylcoumarinyl-7) thiophosphate (Coumaphos). Egypt J Chem 29:713–717.

    CAS  Google Scholar 

  • Makary MH, Riskallah MR, Hegazy ME, Belal MH (1981) Photolysis of phoxim on glass and on tomato leaves. Bull Environ Contam Toxicol 26:413–419.

    PubMed  CAS  Google Scholar 

  • Mansour M (1994) Transformation of chemical contaminants by biotic and abiotic processes in water and soil. Chemosphere 28:323–332.

    CAS  Google Scholar 

  • Mansour M, Thaller S, Korte F (1983) Action of sunlight on parathion. Bull Environ Contam Toxicol 30:358–364.

    PubMed  CAS  Google Scholar 

  • Mansour M, Mamouni A, Meallier P (1988) Factors determining the behavior and transformation of selected pesticides in water, soil suspension, and soil. In: Methodological Aspects of the Study of Pesticide Behavior in the Soil (Workshop Proceedings), Paris. INRA, Paris, pp 87–100.

    Google Scholar 

  • Mansour M, Feicht E, Meallier P (1989) Improvement of the photostability of selected substances in aqueous medium. Toxicol Environ Chem 20–21:139–147.

    Google Scholar 

  • Mansour M, Feicht EA, Scheunert I, Kettrup A (1993) Experimental approaches to studying the persistence of carbofuran, diazinon and pendimethalin in water and soil. In: Del Re AAM (ed) Mobility and Degradation of Xenobiotics. Proceedings of 9th Simposium on Pesticide Chemistry Biagini, Lucca, Italy, pp 421–429.

    Google Scholar 

  • Mansour M, Feicht EA, Behechti A, Schramm KW, Kettrup A (1996) Determination photostability of selected agrochemicals in water and soil. Chemosphere 39:575–585.

    Google Scholar 

  • Mansour M, Feicht EA, Behechti A, Scheunert I (1997) Experimental approaches to studying the photostability of selected pesticides in water and soil. Chemosphere 35: 39–50.

    CAS  Google Scholar 

  • Matsumura F, Esaac EG (1979) Degradation of pesticides by algae and aquatic microorganisms. ACS Symp Ser 99:371–387.

    CAS  Google Scholar 

  • McBain JB, Menn JJ (1973) Stauffer Chemical Co, Sunnyvale, CA. Personal communication to Tanabe (cited in Tanabe et al. 1974).

    Google Scholar 

  • Meallier P, Nury J, Pouyet B, Coste C, Bastide J (1977) Photodegradation of plant protectant organic molecules. II. Kinetics and mechanism of parathion photodegradation. Chemosphere 6:815–820.

    CAS  Google Scholar 

  • Meikle RW, Kurihara NH, DeVries DH (1983) Chlorpyrifos: the photodecomposition rates in dilute aqueous solution and on a surface, and the volatilization rate from a surface. Arch Environ Contam Toxicol 12:189–193.

    CAS  Google Scholar 

  • Mikami N, Ohkawa H, Miyamoto J (1976) Photodecomposition of Surecide (O-ethyl O-4-cyanophenylphosphonothioate) and Cyanox (O,O-dimethyl O-4-cyanophenyl phos-phorothioate). Nippon Noyaku Gakkaishi 1:271–281.

    CAS  Google Scholar 

  • Mikami N, Ohkawa H, Miyamoto J (1977) Photodecomposition of salithion (2-methy-oxy-4H-1,3,2-benzodioxaphosphorin-2-sulfide) and phenthoate [O,O-dimethyl S-α-(ethoxycarbonyl)benzyl phosphorodithioate]. Nippon Noyaku Gakkaishi 2:279–290.

    CAS  Google Scholar 

  • Mikami N, Imanishi K, Yamada H, Miyamoto J (1985) Photodegradation of fenitrothion in water and on soil surface, and its hydrolysis in water. Nippon Noyaku Gakkaishi 10:263–272.

    CAS  Google Scholar 

  • Miller GC, Crosby DG (1982) Pesticide photoproducts: generation and significance. J Toxicol Clin Toxicol 19:707–735.

    PubMed  CAS  Google Scholar 

  • Miller GC, Zepp RG (1983) Extrapolating photolysis rates from the laboratory to the environment. Residue Rev 85:89–110.

    CAS  Google Scholar 

  • Minelli EV, Cabras P, Angioni A, Garau VL, Melis M, Pirisi FM, Cabitza F, Cubeddu M (1996) Persistence and metabolism of fenthion in orange fruit. J Agric Food Chem 44:936–939.

    CAS  Google Scholar 

  • Mitchell TH, Ruzicka JHA, Thomson J, Wheals BB (1968) Chromatographic determination of organophosphorous pesticides. III. Effect of irradiation on the parent compounds. J Chromatogr 32:17–23.

    PubMed  CAS  Google Scholar 

  • Miyamoto J (1977) Degradation of fenitrothion in terrestrial and aquatic environments including photolytic and microbial reactions. NRCC/CNRC 16073. National Research Council of Canada, Ottawa, pp 105–134.

    Google Scholar 

  • Moilanen KW, Crosby DG (1975) Pesticide photo-oxidation in the atmosphere. Environ Qual Saf 3:308–312.

    CAS  Google Scholar 

  • Mok CY, Marriott P, Ong KL, Yeo GN (1987) Photodegradation of parathion. Bull Environ Contam Toxicol 38:820–826.

    PubMed  CAS  Google Scholar 

  • Moreno MJ, Herrmann C, Ivo R, Lourtie IMG, Wamhoff H, Melo E (1995) Consequences of the partition between water and molecular aggregates on the photodegradation pattern and kinetics of a pesticide of the coumarin family. Environ Sci Technol 29:136–114.

    PubMed  CAS  Google Scholar 

  • Morrison H, Curtis H, McDowell T (1966) Solvent effects on the photodimerization of coumarin. J Am Chem Soc 88:5415–5419.

    CAS  Google Scholar 

  • Mosher DR, Kadoum AM (1972) Effects of four lights on malathion residues on glass beads, sorghum grain, and wheat grain. J Econ Entomol 65:847–850.

    PubMed  CAS  Google Scholar 

  • Mueller F (ed) (2000) Agrochemicals. Wiley-VCH, Weinheim, pp 530–619.

    Google Scholar 

  • Murov SL (1973) Handbook of Photochemistry. Dekker, New York.

    Google Scholar 

  • Nesterova IP, Patrashku FI (1982) Photolysis of metaphos, metathion and cyanox. Khim Sel’sk Khoz (4):39–40 [CA 96:195078].

    Google Scholar 

  • Nojima K, Isogami C (1993) Studies on photochemical reactions of air pollutants. XI. Photochemical epoxidation of aldrin with various alpha-diketones in air. Chemosphere 26:921–928.

    CAS  Google Scholar 

  • Nutahara M, Murai T (1984) Accelerating effect of natural unsaturated fatty acids on photodecomposition of chinomethionat (Morestan). Nippon Noyaku Gakkaishi 9:667–674. Ohkawa H, Mikami N, Miyamoto J (1974) Photodecomposition of Sumithion [O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate]. Agric Biol Chem 38:2247–2255.

    Google Scholar 

  • Pal S, Moza PN, Kettrup A (1991) Photochemistry of pendimethalin. J Agric Food Chem 39:797–800.

    CAS  Google Scholar 

  • Parlar H, Korte F (1981) Wie effizient ist der photoinduzierte Abbau organischer Umweltchemikalien in heterogener Phase. Chem Zeitung 105:127–134.

    CAS  Google Scholar 

  • Penuela GA, Barcelo D (1997) Comparative degradation kinetics of chlorpyrifos in water by photocatalysis with FeCl3, TiO2, and photolysis using solid-phase disk extraction followed by gas chromatographic techniques. Toxicol Environ Chem 62:135–147.

    CAS  Google Scholar 

  • Perkow W, Plass H (1996) Wirksubstanzen der Pflanzenschutz- und Schädlingsbekämp fungsmittel, 3rd Ed, Paul Parey Buchverlag, Berlin.

    Google Scholar 

  • Petrova TM (1985) Photochemical degradation of some insecticides. Agrokhimiya (5):97–101 [CA 103:83465].

    Google Scholar 

  • Plane JMC, Zika RG, Zepp RG, Burns LA (1987) Photochemical modeling applied to natural waters. ACS Symp Ser 327:250–267.

    CAS  Google Scholar 

  • Pohlman A, Mill T (1983) Peroxy radical interactions with soil constituents. Soil Sci Soc Am 47:922–927.

    CAS  Google Scholar 

  • Prestlin G, Scheunert I, Mansour M, Wabner D, Kettrup A (1990) Photochemical behaviour of diazinon in water and in a soil-water suspension. 7th Cong Pestic Chem (Frankfurt) III:131 (abstract).

    Google Scholar 

  • Pusino A, Gessa C, Frigerio A (1989) Photolysis of quinalphos in ethanolic solution. Pestic Sci 26:193–197.

    CAS  Google Scholar 

  • Rabek JF (1982a) Experimental Methods in Photochemistry and Photophysics, Part 2. Wiley, Chichester.

    Google Scholar 

  • Rabek JF (1982b) Experimental Methods in Photochemistry and Photophysics, Part 1. Wiley, Chichester.

    Google Scholar 

  • Rosen JD (1972) The photochemistry of several pesticides. In: Matsumura F, Bush GM, Misato T (eds) Environmental Toxicology of Pesticides. Academic Press, New York, pp 435–447.

    Google Scholar 

  • Ross R, Crosby DG (1975) Characterization of photosensitizers in agricultural water. Prep Pap Natl Meet 15:242–244.

    CAS  Google Scholar 

  • Ross RD, Crosby DG (1985) Photooxidant activity in natural waters. Environ Toxicol Chem 4:773–778.

    CAS  Google Scholar 

  • Sandermann H Jr, Scheel D, vd Trenck T (1983) Metabolism of environmental chemicals plants-copolymerization into lignin. J Appl Polym Sci Appl Polym Symp 37:407–420.

    CAS  Google Scholar 

  • Scaiano JC (1989) CRC Handbook of Organic Photochemistry. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Scheunert I, Mansour M, Doerfler U, Schroll R (1993) Fate of pendimethalin, carbofuran and diazinon under abiotic and biotic conditions. Sci Total Environ 132:361–369.

    CAS  Google Scholar 

  • Schwack W (1987) Photoreduction of parathion-ethyl. Toxicol Environ Chem 14:63–72.

    CAS  Google Scholar 

  • Schwack W, Andlauer W, Armbruster W (1994) Photochemistry of parathion in the plant cuticle environment: model reactions in the presence of 2-propanol and methyl 12-hydroxystearate. Pestic Sci 40:279–284.

    CAS  Google Scholar 

  • Schynowski F (1996) Untersuchungen der pflanzlichen Cuticula als Matrix photochemischer Reaktionen von Pestiziden: am Beispiel Parathion und Vinclozolin. Thesis, University of Karlsruhe, Germany, Shaker, Aachen.

    Google Scholar 

  • Schynowski F, Schwack W (1996) Photochemistry of parathion on plant surfaces: relationship between photodecomposition and iodine number of the plant cuticle. Chemosphere 33:2255–2262.

    CAS  Google Scholar 

  • Sharma BK, Gupta N (1994) Photodegradation of the organophosphorus insecticide ‘phorate’. Toxicol Environ Chem 41:249–254.

    CAS  Google Scholar 

  • Shrivastava SP, Knowles CO (1972) Stability studies of iodofenphos insecticide. J Econ Entomol 65:1488–1490.

    PubMed  CAS  Google Scholar 

  • Sledzinski B (1977) Effect of some parameters of the Perkow reaction on stereoisomer proportions in O-1-(2,4-dichlorophenyl)-2-halovinyl-O, O-dialkyl phosphates. Organika 11–18: [CA 90:22160].

    Google Scholar 

  • Smith GN (1966) Basic studies on DURSBAN insecticide. Down Earth 22:3–7.

    CAS  Google Scholar 

  • Smith GN (1968) Ultraviolet light decomposition studies with DURSBAN and 3,5,6-trichloropyridinol. J Econ Entomol 61:793–799.

    CAS  Google Scholar 

  • Sokolenko VA, Dadali VA, Litvinenko LM, Semenov VL (1973) Effect of uv irradiation on the rate of tetraethyl pyrophosphate hydrolysis catalyzed by benzimidazole. Dokl Akad Nauk SSSR 208:1398–1400 (Phys Chem).

    CAS  Google Scholar 

  • Spencer WT (1973) Pesticide volatilization. Residue Rev 49:1–47.

    CAS  Google Scholar 

  • Spencer WT, Adams JF, Shoup TD, Spear RC (1980) Conversion of parathion on soil dusts and clay minerals as affected by ozone and uv light. J Agric Food Chem 28:366–371.

    CAS  Google Scholar 

  • Suppan P (1994) Chemistry and Light. The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Takase I, Nakamura H, Kobayashi M, Tsuboi A, Wakabayashi S (1973) Behavior of Di-Syston in paddy field soils. Noyaku Kenkyu 19:58–64.

    CAS  Google Scholar 

  • Takase I, Oyama H, Ueyama I (1982) Photodecomposition of prothiofos (O-2,4-dichlorophenyl O-ethyl S-propyl phosphorodithioate). Nippon Noyaku Gakkaishi 7:463–471.

    CAS  Google Scholar 

  • Tanabe M, Dehn RL, Bramhall RR (1974) Photochemistry of imidan in diethyl ether. J Agric Food Chem 22:54–56.

    PubMed  CAS  Google Scholar 

  • The Royal Society of Chemistry (1994) The Agrochemicals Handbook, 3rd Ed. The Royal Society of Chemistry, Unwin, Cambridge.

    Google Scholar 

  • Tsao R, Hiroshima A, Eto M (1989) Photolysis of the insecticide pyridafenthion and the effect of some photosensitizers. Nippon Noyaku Gakkaishi 14:315–319.

    CAS  Google Scholar 

  • Turro NJ (1978) Modern Molecular Photochemistry. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Vaidya VK, Pitliya RL, Sharma HS, Verma NK, Ameta SC (1987) Photo-sensitized oxidation of methyl parathion by singlet oxygen. Sci Cult 53:245–246.

    CAS  Google Scholar 

  • Vaidya VK, Pitliya RL, Verma NK, Ameta SC (1990) Sensitized photooxygenation of O, O, O’, O’-tetraethyl S,S’-methylenebis(phosphorodithioate) (Ethion). Afinidad 47: 125–126.

    CAS  Google Scholar 

  • Vaintraub FP, Vylegzhanina GF, Patrashku FI, Nesterova IP (1976a) Effect of environmental factors on the behavior of some organophosphorus insecticides on plants. Biol Zashch Rast Shapa VA (ed), Kishinev, Izd. Shtiintsa, USSR, pp 18–23.

    Google Scholar 

  • Vaintraub FP, Vylegzhanina GF, Dron LP, Keiser LS, Nesterova IP, Patrashku FI (1976b) Pathways for the dispersion and degradation of pesticides. In: Malakhov SG, Borzilov VA (eds) Migr. Prevrashch. Pestits. Okruzhayushchei Srede, Tr. Sov.-Am. Simp. Moskovskoe Otd. Gidrometeoizdata, Moscow, USSR, pp 87–93.

    Google Scholar 

  • Verma NK, Pitliya RL, Vaidya VK, Ameta SC (1991) Photosensitized oxidation of O, O-dimethyl O-(4-nitro-m-tolyl) phosphorothioate by singlet oxygen. Asian J Chem 3:260–263.

    CAS  Google Scholar 

  • Vyas P, Vaidya VK (1996) Photooxidation of O,O-dimethyl-O-4-nitro-m-tolyl phosphorothioate (fenitrothion) by uranyl acetate. Asian J Chem 8:366–370.

    CAS  Google Scholar 

  • Walia S, Dureja P, Mukerjee SK (1988) New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces. Arch Environ Contam Toxicol 17:183–188.

    CAS  Google Scholar 

  • Walia S, Dureja P, Mukerjee SK (1989) Photodegradation of the organophosphorus insecticide iodofenphos. Pestic Sci 26:1–9.

    CAS  Google Scholar 

  • Wan HB, Wong MK, Mok CY (1994) Comparative study on the quantum yields of direct photolysis of organophosphorus pesticides in aqueous solution. J Agric Food Chem 42:2625–2630.

    CAS  Google Scholar 

  • Wargo JP, Honeycut RD, Adler IL (1975) Characterization of bound residues of [3H]-triforine in straw of barley grown in the field. J Agric Food Chem 23:1095–1097.

    PubMed  CAS  Google Scholar 

  • Watkins DAM (1974) Some implications of the photochemical decomposition of pesticides. Chem Ind 2:185–190.

    Google Scholar 

  • Weintraub FP, Vylegzhanina GF, Dron LP, Keiser LS, Nesterova IP, Patrashku FI (1978) Pathways of pesticide dissipation and decomposition. In: Symp. Environ. Transp. Transform. Pestic, EPA report EPA-600/9–78-003, pp 140–150.

    Google Scholar 

  • Weis LD, Evans TR, Leermakers PA (1968) Electronic spectra and photochemistry of adsorbed organic molecules. IV. Binding effects of silica as a mechanistic probe in systems of photochemical interest. J Am Chem Soc 90:6109–6118.

    CAS  Google Scholar 

  • Wettach J, Schwack W (1999) Nachweis Cuticula-gebundener Rückstände von Parathion mittels ELISA. Lebensmittelchemie 53:122–123.

    CAS  Google Scholar 

  • Winer AM, Atkinson R (1990) Atmospheric reaction pathways and lifetimes for organophosphorous compounds. In: Kurtz DA (ed) Long-Range Transport of Pesticides. Lewis, Chelsea, MI, pp 115–127.

    Google Scholar 

  • Wolfe NL, Zepp RG, Baughman GL, Fincher RC, Gordon JA (1976) Chemical and photochemical transformation of selected pesticides in aquatic systems. EPA-600/3–76-067. NTIS, Springfield, VA.

    Google Scholar 

  • Woodrow JE, Seiber JN, Crosby DG, Moilanen KW, Soderquist CJ, Mourer C (1977) Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment. Arch Environ Contam Toxicol 6:175–191.

    PubMed  CAS  Google Scholar 

  • Woodrow JE, Crosby DG, Mast T, Moilanen KW, Seiber JN (1978) Rates of transformation of trifluralin and parathion vapors in air. J Agric Food Chem 26:1312–1316.

    CAS  Google Scholar 

  • Woodrow JE, Crosby DG, Seiber JN (1983) Vapor-phase photochemistry of pesticides. Residue Rev 85:111–125.

    CAS  Google Scholar 

  • Wybieralski J (1980) Photolysis of chlorfenvinphos. Khim Sel’sk Khoz 18:58–59.

    CAS  Google Scholar 

  • Wybieralski J (1982) Attempt of chlorfenvinphos Z fwdarw E photoisomerization inhibition by absorbers of UV irradiation. Pestycydy (Warsaw) (1–2):21–26 [CA 98: 102569].

    Google Scholar 

  • Wybieralski J (1983a) Effect of tinuvin P content on the kinetics of Z to E photoisomerization of chlorfenvinphos. Pestycydy (Warsaw) (1):1–6 [CA 99:189770].

    Google Scholar 

  • Wybieralski J (1983b) Photostabilization of Enolofos 50 EC photostabilization of Enolofos 50 EC. Zesz Nauk Akad Roln Szcz 104:135–141.

    Google Scholar 

  • Yager JE, Yue CD (1988) Evaluation of the xenon arc lamp as a light source for aquatic photodegradation studies: comparison with natural sunlight. Environ Toxicol Chem 7:1003–1011.

    CAS  Google Scholar 

  • Yanmaguchi Y, Kawano M, Kannan N, Tanabe M (1990) Global monitoring of organochlorine insecticides. In: Kurtz DA (ed) Long-Range Transport of Pesticides. Lewis, Chelsea, MI, pp 127–140.

    Google Scholar 

  • Yue Y, Hua R (1992) Photosensitive degradation of pyrethroid insecticides. Huanjing Kexue Xuebao 12:466–472.

    CAS  Google Scholar 

  • Yue Y, Hua R (1993) Sensitization and quenching effects of selected pesticides on photo-degradation of pyrethroid insecticides in water. Huanjing Kexue Xuebao 13:164–168.

    CAS  Google Scholar 

  • Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Photochemistry of natural waters: many compounds and environments are affected by sunlight-induced photochemistry. Environ Sci Technol 18:358A–371A.

    CAS  Google Scholar 

  • Zepp RG (1982) Experimental approaches to environmental photochemistry. In: Hutzinger O (ed) The Handbook of Environmental Chemistry, Vol. 2, Part B. Springer-Verlag, Berlin, pp 19–44.

    Google Scholar 

  • Zepp RG, Cline DM (1977) Rates of direct photolysis in aquatic environment. Environ Sci Technol 11:359–366.

    CAS  Google Scholar 

  • Zepp RG, Baughman GL, Schlotzhauer PF (1981) Comparison of the photochemical behavior of various humic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 10:109–117.

    CAS  Google Scholar 

  • Zepp RG, Schlotzhauer PF, Sink RM (1985) Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environ Sci Technol 19:74–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this chapter

Cite this chapter

Floesser-Mueller, H., Schwack, W. (2001). Photochemistry of Organophosphorus Insecticides. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 172. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0159-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0159-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9484-6

  • Online ISBN: 978-1-4613-0159-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics