Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 172))

Abstract

Organophosphorus (OP) insecticides continue to be an important group of pesticides widely used worldwide in spite of the introduction of the modern synthetic pyrethroids. The success of this class of compounds as insecticides is due to three main characteristics: (1) they show a relatively low persistence in the environment in comparison with their predecessors, the organochlorine (OC) insecticides; (2) they show low accumulation by biota; and (3) they generally exhibit a high acute toxicity. OPs can be broken down by a large variety of physicochemical and biological processes, such as hydrolysis, photolysis, or microbial degradation. They present a wide range of half-lives in the environment, from a few days to several months. For instance, degradation half-lives of OPs on plant foliage ranged between 0.2 to 10.5 d while in soil the range was between 7 and 144 d, depending on the OP and soil type (Racke 1992). Half-lives in water ranged from a few hours—at high temperature or pH, or in the presence of light—to more than 6 mon (Lartiges and Garrigues 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah AR, Kumar A, Chapman JC (1994) Inhibition of acetylcholinesterase in the Australian freshwater shrimp (Paratya australiensis) by profenofos. Environ Toxicol Chem 13:1861–1866.

    Google Scholar 

  • Abgrall P, Rangeley RW, Burridge LE, Lawton P (2000) Sublethal effects of azameth-iphos on shelter use by juvenile lobsters (Homarus americanus). Aquaculture 181: 1–10.

    Article  CAS  Google Scholar 

  • Anwar WA (1997) Biomarkers of human exposure to pesticides. Environ Health Perspect 105:801–806.

    PubMed  CAS  Google Scholar 

  • Bacci E (1994) Ecotoxicology of organic contaminants, Lewis, Boca Raton, FL.

    Google Scholar 

  • Baker KN (1985) Laboratory and field experiments on the responses by two species of woodland salamanders to malathion-treated substrates. Arch Environ Contam Toxicol 14:685–691.

    Article  CAS  Google Scholar 

  • Bálint T, Szegletes T, Szegletes ZS, Halasy K, Nemcsök J (1995) Biochemical and subcellular changes in carp exposed to the organophosphorus methidathion and the pyre-throid deltamethrin. Aquat Toxicol 33:279–295.

    Article  Google Scholar 

  • Barron MG, Charron KA, Stott WT, Duvall SE (1999) Tissue carboxylesterase activity of rainbow trout. Environ Toxicol Chem 18:2506–2511.

    Article  CAS  Google Scholar 

  • Bartkowiak DJ, Wilson BW (1995) Avian plasma carboxylesterase activity as a potential biomarker of organophosphate pesticide exposure. Environ Toxicol Chem 14:2149–2153.

    Article  CAS  Google Scholar 

  • Beauvais SL, Jones SB, Brewer SK, Little EE (2000) Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures. Environ Toxicol Chem 19:1875–1880.

    CAS  Google Scholar 

  • Beiden JB, Lydy MJ (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19:2266–2274.

    Article  Google Scholar 

  • Benke GM, Murphy SD (1974) Anticholinesterase action of methyl parathion, parathion and azinphosmethyl in mice and fish: onset and recovery of inhibition. Bull Environ Contam Toxicol 12:117–122.

    Article  PubMed  CAS  Google Scholar 

  • Bishop CA, Ng P, Pettit KE, Kennedy SW, Stegeman JJ, Norstrom RJ, Brooks RJ (1998) Environmental contamination and developmental abnormalities in eggs and hatchlings of the common snapping turtle (Chelydra serpentina serpentina) from the Great Lakes-St. Lawrence River basin (1989–91). Environ Pollut 101:143–156.

    Article  PubMed  CAS  Google Scholar 

  • Bocquené G, Galgani F (1991) Acetylcholinesterase activity in the common prawn (Pa-laemon serratus) contaminated by carbaryl and phosalone: choice of a method for detection of effects. Ecotoxicol Environ Saf 22:337–344.

    Article  PubMed  Google Scholar 

  • Bocquené G, Galgani F, Truquet P (1990) Characterization and assay conditions for use of ACHE activity from several marine species in pollution monitoring. Mar Environ Res 30:75–89.

    Article  Google Scholar 

  • Boone JS, Chambers JE (1997) Biochemical factors contributing to toxicity differences among chlorpyrifos, parathion, and methyl parathion in mosquitofish (Gambusia affinis). Aquat Toxicol 39:333–343.

    Article  CAS  Google Scholar 

  • Brewer LW, Driver CJ, Kendall RJ, Lacher TE, Galindo JC (1988) Avian response to a turf application of Triumph® 4E. Environ Toxicol Chem 7:391–401.

    Article  CAS  Google Scholar 

  • Burger J, Snodgrass JW (2000) Oral deformities in several species of frogs from the Savannah River Site, USA. Environ Toxicol Chem 19:2519–2524.

    Article  CAS  Google Scholar 

  • Burgess NM, Hunt KA, Bishop C, Weseloh DV (1999) Cholinesterase inhibition in tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis) exposed to organophosphorous insecticides in apple orchards in Ontario, Canada. Environ Toxicol Chem 18:708–716.

    CAS  Google Scholar 

  • Busby DG, Pearce PA, Garrity NR, Reynolds LM (1983) Effect of an organophosphorus insecticide on brain Cholinesterase activity in white-throated sparrows exposed to aerial forest spraying. J Appl Ecol 20:255–263.

    Article  CAS  Google Scholar 

  • Busby DG, White LM, Pearce PA (1991) Brain acetylcholinesterase activity in forest songbirds exposed to a new method of UULV fenitrothion spraying. Arch Environ Contam Toxicol 20:25–31.

    Article  PubMed  CAS  Google Scholar 

  • Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311.

    Article  PubMed  CAS  Google Scholar 

  • Campbell KR, Campbell TS (2000) Lizard contaminant data for ecological risk assessment. Rev Environ Contam Toxicol 165:39–116.

    Article  PubMed  CAS  Google Scholar 

  • Chambers JE, Levi EP (1992) Organophosphates: Chemistry, Fate, and Effects. Academic Press, New York.

    Google Scholar 

  • Chambers JE, Carr RL (1995) Biochemical mechanisms contributing to species differences in insecticidal toxicity. Toxicology 105:291–304.

    Article  PubMed  CAS  Google Scholar 

  • Chapman PM (1995) Ecotoxicology and pollution—key issues. Mar Pollut Bull 31:167–177.

    Article  CAS  Google Scholar 

  • Clark JR, Cripe CR (1998) Marine and estuarine multi-species test systems. In: Calow P (ed) Handbook of Ecotoxicology. Blackwell, Oxford, pp 227–247.

    Google Scholar 

  • Connell D, Lam P, Richardson B, Wu R (1999) Introduction to Ecotoxicology. Blackwell, Oxford.

    Google Scholar 

  • Coppage DL, Matthews E (1974) Short-term effects of organophosphate pesticides on Cholinesterase of estuarine fishes and pink shrimp. Bull Environ Contam Toxicol 11: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Crane M, Delaney P, Watson S, Parker P, Walker C (1995) The effect of malathion 60 on Gammarus pulex (L.) below watercress beds. Environ Toxicol Chem 14:1181–1188.

    CAS  Google Scholar 

  • Crane M, Attwood C, Sheahan D, Morris S (1999) Toxicity and bioavailability of the organophosphorus insecticide pirimiphos methyl to the freshwater amphipod Gammarus pulex L. in laboratory and mesocosm systems. Environ Toxicol Chem 18:1456–1461.

    CAS  Google Scholar 

  • Dauberschmidt C, Dietrich RD, Schlatter C (1997) Esterase in the zebra mussel Dreissena polymorpha activities, inhibition, and binding to organophosphates. Aquat Toxicol 37:295–305.

    Article  CAS  Google Scholar 

  • Day KE, Scott IM (1990) Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquat Toxicol 18:101–114.

    Article  CAS  Google Scholar 

  • Devi M, Fingerman M (1995) Inhibition of acetylcholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead. Bull Environ Contam Toxicol 55:746–750.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Diaz R (1997) Dinámica de Plaguicidas en el Suelo: Evaluation del Riesgo de Contaminación del Agua Subterránea. PhD thesis. University of La Laguna, Spain.

    Google Scholar 

  • Dieter MP, Ludke JL (1975) Studies on combined effects of organophosphates and heavy metals in birds. I. Plasma and brain Cholinesterase in Coturnix quail fed methyl mercury and orally dosed with parathion. Bull Environ Contam Toxicol 13:257–262.

    Article  PubMed  CAS  Google Scholar 

  • Dieter MP, Ludke JL (1978) Studies on combined effects of organophosphates or carbamates and morsodren in birds. II. Plasma and brain Cholinesterase in quail fed morso-dren and orally dosed with parathion or carbofuran. Bull Environ Contam Toxicol 19:389–395.

    Article  PubMed  CAS  Google Scholar 

  • DiPinto LM (1996) Trophic transfer of a sediment-associated organophosphate pesticide from meiobenthos to bottom feeding fish. Arch Environ Contam Toxicol 30:459–466.

    Article  PubMed  CAS  Google Scholar 

  • Donkin SG, Williams PL (2000) Neurotoxicity: toxic responses of the nervous system. In: Williams PL, James RC, Roberts SM (eds) Principles of Toxicology: Environmental and Industrial Applications, 2nd Ed. Wiley-Interscience, New York, pp 145–155.

    Google Scholar 

  • Edery H, Schatzberg-Porath G (1960) Studies on the effect of organophosphorus insecticides on amphibians. Arch Int Pharmacodyn 124:212–224.

    PubMed  CAS  Google Scholar 

  • Ertl RP, Winston GW (1998) The microsomal mixed function oxidase system of amphibians and reptiles: components, activities and induction. Comp Biochem Physiol 121C: 85–105.

    CAS  Google Scholar 

  • Ertl RP, Stegeman JJ, Winston GW (1998) Induction time course of cytochromes P450 by phenobarbital and 3-methylcholanthrene pretreatment in liver microsomes of Alligator mississippiensis. Biochem Pharmacol 55:1513–1521.

    Article  PubMed  CAS  Google Scholar 

  • Escartm E, Porte C (1996) Acetylcholinesterase inhibition in the crayfish Procambarus clarkii exposed to fenitrothion. Ecotoxicol Environ Saf 34:160–164.

    Article  Google Scholar 

  • Escartm E, Porte C (1997) The use of Cholinesterase and carboxylesterase activities from Mytilus galloprovincialis in pollution monitoring. Environ Toxicol Chem 16:2090–2095.

    Google Scholar 

  • Fairbrother A, Bennett RS, Bennett JK (1989) Sequential sampling of plasma Cholinesterase in mallards (Anas platyrhynchos) as an indicator of exposure to Cholinesterase inhibitors. Environ Toxicol Chem 8:117–122.

    CAS  Google Scholar 

  • Fisher TC, Crane M, Callaghan A (2000) An optimized microtiterplate assay to detect acetylcholinesterase activity in individual Chironomus riparius Meigen. Environ Toxicol Chem 19:1749–1752.

    CAS  Google Scholar 

  • Fleming WJ (1981) Recovery of brain and plasma Cholinesterase activities in ducklings exposed to organophosphorus pesticides. Arch Environ Contam Toxicol 10:215–229.

    Article  PubMed  CAS  Google Scholar 

  • Fleming WJ, Grue CE (1981) Recovery of Cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide. Pestic Biochem Physiol 16: 129–135.

    Article  CAS  Google Scholar 

  • Forget J, Pavillon JF, Beliaeff B, Bocquené G (1999) Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (Copepoda, Harpacticoida). Environ Toxicol Chem 18: 912–918.

    CAS  Google Scholar 

  • Fossi MC, Sanchez-Hernandez JC, Diaz-Diaz R, Lari L, Garcia-Hernandez JE, Gaggi C (1995) The lizard Gallotia galloti as a bioindicator or organophosphorus contamination in the Canary Islands. Environ Pollut 87:289–294.

    Article  PubMed  CAS  Google Scholar 

  • Fryday SL, Hart ADM, Langton SD (1996) Effects of exposure to an organophosphorus pesticide on the behavior and use of cover by captive starlings. Environ Toxicol Chem 15:1590–1596.

    Article  CAS  Google Scholar 

  • Galgani F, Bocquené G (1990) In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates. Bull Environ Contain Toxicol 45: 243–249.

    Article  CAS  Google Scholar 

  • Galgani F, Bocquené G, Cadiou Y (1992) Evidence of variation in Cholinesterase activity in fish along a pollution gradient in the North Sea. Mar Ecol Prog Ser 13:77–82.

    Article  Google Scholar 

  • Galindo JC, Kendall RJ, Driver CJ, Lacher TE (1985) The effects of methyl parathion on susceptibility of bobwhite quail (Colinus virginianus) to domestic cat predation. Behav Neural Biol 43:21–36.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez T, Ferrer M, Recio F, Castroviejo J (1987) Orcadian rhythms of determined blood chemistry values in buzzards and eagle owls. Comp Biochem Physiol 88A:663–671.

    Article  CAS  Google Scholar 

  • Gruber SJ, Munn MD (1998) Organophosphate and carbamate insecticides in agricultural waters and Cholinesterase (ChE) inhibition in common carp (Cyprinus carpio). Arch Environ Contam Toxicol 35:391–396.

    Article  PubMed  CAS  Google Scholar 

  • Grue CE, Shipley BK (1981) Interpreting population estimates of birds following pesticides applications—behavior of male starlings exposed to an organophosphate pesticide. Stud Avian Biol 6:292–296.

    Google Scholar 

  • Grue CE, Powell GVN, McChesney MJ (1982) Care of nestlings by wild female starlings exposed to an organophosphate pesticide. J Appl Ecol 19:327–335.

    Article  CAS  Google Scholar 

  • Guilhermino L, Lopes MC, Carvallo AP, Soares AMVM (1996) Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere 32:727–738.

    Article  PubMed  CAS  Google Scholar 

  • Guilhermino L, Barros P, Silva MC, Soares AMVM (1998) Should the use of inhibition of Cholinesterase as a specific biomarker for organophosphate and carbamate pesticide be questioned? Biomarkers 3:157–163.

    Article  CAS  Google Scholar 

  • Hai DQ, Varga SI, Matkovics (1997) Organophosphate effects on antioxidant system of carp (Cyprinus carpa) and catfish (Ictalurus nebulosus). Comp Biochem Physiol 117C:83–88.

    CAS  Google Scholar 

  • Hall RJ, Clark DR Jr (1982) Responses of the iguanid lizard Anolis carolinensis to four organophosphorus pesticides. Environ Pollut 28:45–52.

    Article  CAS  Google Scholar 

  • Hall RJ, Henry FP (1992) Assessing effects of pesticides on amphibians and reptiles: status and needs. Herpetol J 2:65–71.

    Google Scholar 

  • Hamilton GA, Hunter K, Ruthven AD (1981) Inhibition of brain acetylcholinesterase activity in songbirds exposed to fenitrothion during aerial spraying of forests. Bull Environ Contam Toxicol 27:856–863.

    Article  PubMed  CAS  Google Scholar 

  • Hart ADM (1993) Relationship between behavior and the inhibition of acetylcholinesterase in birds exposed to organophosphorus pesticides. Environ Toxicol Chem 12:321–336.

    Article  CAS  Google Scholar 

  • Hill EF, Murray HC (1987) Seasonal variation in diagnostic enzymes and biochemical constituents of captive northern bobwhites and passerines. Comp Biochem Physiol 87B:933–940.

    CAS  Google Scholar 

  • Holmes SB, Boag PT (1990a) Inhibition of brain and plasma Cholinesterase activity in zebra finches orally dosed with fenitrothion. Environ Toxicol Chem 9:323–334.

    Article  CAS  Google Scholar 

  • Holmes SB, Boag PT (1990b) Effects of the organophosphorus pesticide fenitrothion on behavior and reproduction in zebra finches. Environ Res 53:62–75.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins WA (2000) Reptiles toxicology: challenges and opportunities on the last frontier in vertebrate ecotoxicology. Environ Toxicol Chem 19:2391–2393.

    Article  CAS  Google Scholar 

  • Huang TL, Obih PO, Jaiswal R, Hartley WR, Thiyagarajah A (1997) Evaluation of liver and brain esterases in the spotted gar fish (Lepisosteus oculatus) as biomarkers of effect in the lower Mississippi river basin. Bull Environ Contain Toxicol 58:688–695.

    Article  CAS  Google Scholar 

  • Johnson JA, Wallace KB (1987) Species-related differences in the inhibition of brain acetylcholinesterase by paraoxon and malaoxon. Toxicol Appl Pharmacol 88:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Johnston G (1995) The study of interactive effects of pollutants: a biomarker approach. Sci Total Environ 171:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Keizer J, D’Agostino G, Nagel R, Volpe T, Gnemi P, Vittozzi L (1995) Enzymological differences of ACHE and diazinon hepatic metabolism: correlation of in vitro data with the selective toxicity of diazinon to fish species. Sci Total Environ 171:213–220.

    Article  PubMed  CAS  Google Scholar 

  • Kent C (1998) Basics of Toxicology. Wiley, New York, pp 80–82.

    Google Scholar 

  • Kirby MF, Morris S, Hurst M, Kirby SJ, Neall P, Tylor T, Fagg A (2000) The use of Cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Mar Pollut Bull 40:780–791.

    Article  CAS  Google Scholar 

  • Kloas W, Lutz I, Einspanier R (1999) Amphibians as a model to study endocrine disrupt-ors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ 225:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Kozlovskaya VI, Mayer FL (1984) Brain acetylcholinesterase and backbone collagen in fish intoxicated with organophosphate pesticides. J Great Lakes Res 10:261–266.

    Article  CAS  Google Scholar 

  • Kozlovskaya VI, Mayer FL, Menzikova OV, Chuyko GM (1993) Cholinesterase of aquatic animals. Rev Environ Contam Toxicol 132:117–141.

    Article  CAS  Google Scholar 

  • Kumar A, Chapman JC (1998) Profenofos toxicity to the eastern rainbow fish (Melanotaenia duboulayi). Environ Toxicol Chem 17:1799–1806.

    CAS  Google Scholar 

  • Lartiges SB, Garrigues PP (1995) Degradation kinetics of organophosphorus and organo-nitrogen pesticides in different waters under various environmental conditions. Environ Sci Technol 29:1246–1254.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MRK (1997) Effects of pesticides on amphibians and reptiles in sub-Saharan Africa. Rev Environ Contam Toxicol 150:31–73.

    Article  CAS  Google Scholar 

  • Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem 18:1948–1955.

    Article  CAS  Google Scholar 

  • Ludke JL, Hill EF, Dieter MP (1975) Cholinesterase (ChE) response and related mortality among birds fed ChE inhibitors. Arch Environ Contam Toxicol 3:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Lundebye A-K, Curtis TM, Braven J, Depledge MH (1997) Effects of the organophosphorus pesticide, dimethoate, on cardiac and acetylcholinesterase (ACHE) activity in the shore crab Carcinus maenas. Aquatic Toxicol 40:23–36.

    Article  CAS  Google Scholar 

  • Lutz I, Kloas W (1999) Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci Total Environ 225:49–57.

    Article  PubMed  CAS  Google Scholar 

  • Mackay D (1998) Fate models. In: Calow P (ed) Handbook of Ecotoxicology. Blackwell, Oxford, pp 812–831.

    Google Scholar 

  • Martin PA, Johnson DL, Forsyth DJ (1996) Effects of grasshopper-control insecticides on survival and brain acetylcholinesterase of pheasant (Phasianus colchicus) chicks. Environ Toxicol Chem 15:518–524.

    CAS  Google Scholar 

  • Matz AC, Bennet RS, Landis WG (1998) Effects of azinphos-methyl on northern bob-white: a comparison of laboratory and field results. Environ Toxicol Chem 17:1364–1370.

    Article  CAS  Google Scholar 

  • Maxwell DM (1992) Detoxification of prganophosphorus compounds by carboxylester-ases. In: Chambers JE, Levi PE (eds) Organophosphates: Chemistry, Fate, and Effects. Academic Press, New York, pp 183–199.

    Google Scholar 

  • McHenery JG, Linley-Adams GE, Moore DC, Rodger GK, Davies IM (1997) Experimental and field studies of effects of dichlorvos exposure on acetylcholinesterase activity in the gills of the mussel, Mytilus edulis L. Aquat Toxicol 38:125–143.

    Article  CAS  Google Scholar 

  • McInnes PF, Andersen DE, Hoff DJ, Hooper MJ, Kinkel LL (1996) Monitoring exposure of nestling songbirds to agricultural application of an organophosphorus insecticide using Cholinesterase activity. Environ Toxicol Chem 15:544–552.

    Article  CAS  Google Scholar 

  • McKenzie C, Godley BJ, Furness RW, Wells DE (1999) Concentrations and patterns of organochlorine contaminants in marine turtles from Mediterranean and Atlantic waters. Mar Environ Res 47:117–135.

    Article  CAS  Google Scholar 

  • McLoughlin N, Yin D, Maltby L, Wood RB, Yu H (2000) Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environ Toxicol Chem 19: 2085–2092.

    Article  CAS  Google Scholar 

  • Meyers-Schöne L, Walton BT (1994) Turtles as monitors of chemical contaminants in the environment. Rev Environ Contam Toxicol 135:93–153.

    Article  Google Scholar 

  • Mohamed MI, Aly MS, Selim MF (1983) Effects of ambient temperature on brain acetylcholinesterase activity and protein content in three Egyptian vertebrates. Comp Bio-chem Physiol 76C:127–130.

    Article  CAS  Google Scholar 

  • Mora P, Michel X, Narbonne J-F (1999) Cholinesterase activity as potential biomarker in two bivalves. Environ Toxicol Pharmacol 7:253–260.

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ, Fancey LL, Kiceniuk JW (1990) Response and recovery of brain acetylcholinesterase activity in Atlantic salmon (Salmo salar) exposed to fenitrothion. Can J Fish Aquat Sci 47:1652–1654.

    Article  CAS  Google Scholar 

  • Moulton CA, Fleming WJ, Purnell CE (1996) Effects of two cholinesterase-inhibiting pesticides on freshwater mussels. Environ Toxicol Chem 15:131–137.

    Article  CAS  Google Scholar 

  • Najimi S, Bouhaimi A, Daubéze M, Zekhnini A, Pellerin J, Narbonne JF, Moukrim A (1997) Use of acetylcholinesterase in Perna perna and Mytilu galloprovincialis as a biomarker of pollution in Agadir marine bay (South of Morocco). Bull Environ Contam Toxicol 58:901–908.

    Article  PubMed  CAS  Google Scholar 

  • Nimmo DR, McEwen LC (1998) Pesticides. In: Calow P (ed) Handbook of Ecotoxicol-ogy. Blackwell, Oxford, pp 619–667.

    Google Scholar 

  • Ozmen M, Sener S, Mete A, Kucukbay H (1999) In vitro and in vivo acetylcholinesterase-inhibiting effect of new classes of organophosphorus compounds. Environ Toxicol Chem 18:241–246.

    Article  CAS  Google Scholar 

  • Padilla S, Wilson VZ, Bushnell PJ (1994) Studies on the correlation between blood Cholinesterase inhibition and “target tissue” inhibition in pesticide-treated rats. Toxicology 92:11–25.

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Dutta HM (1998) The inhibition of brain acetylcholinesterase activity of juvenile largemouth bass Micropterus salmoides by sublethal concentrations of diazinon. Environ Res 79:133–137.

    Article  PubMed  CAS  Google Scholar 

  • Parrot JL, Chong-Kit R, Rokosh DA (1999) EROD induction in fish: a tool to measure environmental exposure. In: Rao SS (ed) Impact Assessment of Hazardous Aquatic Contaminants: Concepts and Approaches. Lewis, Boca Raton, FL, pp 99–122.

    Google Scholar 

  • Parsons KC, Matz AC, Hooper MJ, Pokras MA (2000) Monitoring wading bird exposure to agricultural chemicals using serum Cholinesterase activity. Environ Toxicol Chem 19:1317–1323.

    Article  CAS  Google Scholar 

  • Payne JF, Mathieu A, Melvin W, Fancey LL (1996) Acetylcholinesterase, an old bio-marker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 32:225–231.

    Article  CAS  Google Scholar 

  • Peakall DB (1985) Behavioural responses of birds to pesticides and other contaminants. Residue Rev 96:45–77.

    CAS  Google Scholar 

  • Pollet I, Bendell-Young LI (2000) Amphibians as indicators of wetland quality in wetlands formed from oil sands effluent. Environ Toxicol Chem 19:2589–2597.

    Article  CAS  Google Scholar 

  • Potter JL, O’Brien RD (1963) The relation between toxicity and metabolism of paraoxon in the frog, mouse and cockroach. Entomol Exp Appl 6:319–325.

    Article  CAS  Google Scholar 

  • Qadri YH, Swamy AN, Rao JV (1994) Species differences in brain acetylcholinesterase response to monocrotophos in vitro. Ecotoxicol Environ Saf 28:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Racke KD (1992) Degradation of organophosphorus insecticides in environmental matrices. In: Chambers JE, Levi EP (eds) Organophosphates: Chemistry, Fate, and Effects. Academic Press, New York, pp 47–77.

    Google Scholar 

  • Rainwater TR, Leopold VA, Hooper MJ, Kendall RJ (1995) Avian exposure to organophosphorus and carbamate pesticides on a coastal South Carolina golf course. Environ Toxicol Chem 14:2155–2161.

    Article  CAS  Google Scholar 

  • Rattner BA, Becker JM, Nakatsugawa T (1987) Enhancement of parathion toxicity to quail by heat and cold exposure. Pestic Biochem Physiol 27:330–339.

    Article  CAS  Google Scholar 

  • Richmonds CR, Dutta HM (1992) Effect of malathion on the brain acetylcholinesterase activity of bluegill sunfish Lepomis macrochirus. Bull Environ Contain Toxicol 49: 431–435.

    Article  CAS  Google Scholar 

  • Russell RW, Overstreet DH (1987) Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog Neurol Biol 28:97–129.

    Article  CAS  Google Scholar 

  • Sanchez JC, Fossi MC, Focardi S (1997a) Serum “B” esterases as a nondestructive bio-marker for monitoring the exposure of reptiles to organophosphorus insecticides. Ecotoxicol Environ Saf 37:45–52.

    Article  Google Scholar 

  • Sanchez JC, Fossi MC, Focardi S (1997b) Serum “B” esterases as a non-destructive biomarker in the lizard Gallotia galloti experimentally treated with parathion. Environ Toxicol Chem 16:1954–1961.

    CAS  Google Scholar 

  • Sanchez-Hernandez JC, Walker CH (2000) In vitro and in vivo Cholinesterase inhibition in lacertides by phosphonate- and phosphorothioate-type organophosphates. Pestic Biochem Physiol 67:1–12.

    Article  CAS  Google Scholar 

  • Sancho E, Ferrando MD, Andreu E (1997) Response and recovery of brain acetylcholinesterase activity in the European eel, Anguilla anguilla, exposed to fenitrothion. Ecotoxicol Environ Saf 38:205–209.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Hernandez JC, Fossi MC, Leonzio C, Focardi S, Barra R, Gavilan JF, Parra O (1998) Use of biochemical biomarkers as a screening tool to focus the chemical monitoring of organic pollutants in the Biobio river basin, Chile. Chemosphere 37:699–710.

    Article  CAS  Google Scholar 

  • Sancho E, Ferrando MD, Andreu E (1998) In vivo inhibition of ACHE activity in the European eel Anguilla anguilla exposed to technical grade fenitrothion. Comp Biochem Physiol 120C:389–395.

    CAS  Google Scholar 

  • Scaps P, Demuynck S, Descamps M, Dhainaut A (1997) Effects of organophosphate and carbamate pesticides on acetylcholinesterase and choline acetyltransferase of the polychaete Nereis divesicolor. Arch Environ Contam Toxicol 33:203–208.

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Liess M (1999) A field study of the effects of agriculturally derived insecticide input on stream macroinvertebrate dynamics. Aquat Toxicol 46:155–176.

    Article  CAS  Google Scholar 

  • Shapira M, Seidman S, Livni N, Soreq H (1998) In vivo and in vitro resistance to multiple anticholinesterases in Xenopus laevis tadpoles. Toxicol Lett 102–103:205–209.

    Article  Google Scholar 

  • Shugart LR, McCarthy JF, Halbrook RS (1992) Biological markers of environmental and ecological contamination: an overview. Risk Anal 12:353–359.

    Article  PubMed  CAS  Google Scholar 

  • Soler-Rodriguez F, Miguez-Santiyan MP, Reja-Sanchez A, Roncero-Cordero V, Garcia-Cambero JP (1998) Recovery of brain acetylcholinesterase and plasma Cholinesterase activities in quail (Coturnix coturnix) after chlorpyriphos administration and effect of pralidoxime treatment. Environ Toxicol Chem 17:1835–1839.

    CAS  Google Scholar 

  • Sparling DW, Lowe TP, Pinkney AE (1997) Toxicity of Abate to green frog tadpoles. Bull Environ Contam Toxicol 58:475–481.

    Article  PubMed  CAS  Google Scholar 

  • Stafford TR, Best LB (1998) Effects of application rate on avian risk from granular pesticides. Environ Toxicol Chem 17:526–529.

    Article  CAS  Google Scholar 

  • Stafford TR, Best LB, Fischer DL (1996) Effects of different formulations of granular pesticides on birds. Environ Toxicol Chem 15:1606–1611.

    Article  CAS  Google Scholar 

  • Steen RJCA, Leonards PEG, Brinkman UAT, Barceló D, Tronczynsky J, Albanis TA, Cofino WP (1999) Ecological risk assessment of agrochemicals in European estuaries. Environ Toxicol Chem 18:1574–1581.

    Article  CAS  Google Scholar 

  • Stien X, Percic P, Gnassia-Barelli M, Roméo M, Lafaurie M (1998) Evaluation of bio-markers in caged fishes and mussels to assess the quality of waters in a bay of the NW Mediterranean Sea. Environ Pollut 99:339–345.

    Article  PubMed  CAS  Google Scholar 

  • Straus DL, Chambers JE (1995) Inhibition of acetylcholinesterase and aliesterases of fingerling channel catfish by chlorpyrifos, parathion, and S,S,S-tributyl phosphoro-trithioate (DEF). Aquat Toxicol 33:311–324.

    Article  CAS  Google Scholar 

  • Sturm A, da Silva de Assis HC, Hansen P-D (1999a) Cholinesterase of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination. Mar Environ Res 47:389–398.

    Article  CAS  Google Scholar 

  • Sturm A, Wogram J, Hansen P-D, Liess M (1999b) Potential use of Cholinesterase in monitoring low levels of organophosphates in small streams: natural variability in three-spined stickleback (Gasterosteus aculeatus) and relation to pollution. Environ Toxicol Chem 18:194–200.

    CAS  Google Scholar 

  • Sturm A, Wogram J, Segner H, Liess M (2000) Different sensitivity to organophosphates of acetylcholinesterase and butyrylcholinesterase from three-spined stickleback (Gasterosteus aculeatus): application in biomonitoring. Environ Toxicol Chem 19:1607–1615.

    CAS  Google Scholar 

  • Thompson HM, Walker CH (1994) Blood esterases as indicators of exposure to organophosphorous and carbamate insecticides. In: Fossi MC, Leonzio C (eds) Nondestructive Biomarkers in Vertebrates. Lewis, Chelsea, MI, pp 37–62.

    Google Scholar 

  • Thompson HM, Walker CH, Hardy AR (1988) Avian esterases as indicator of exposure to insecticides—the factor of diurnal variation. Bull Environ Contam Toxicol 41: 4–11.

    Article  PubMed  CAS  Google Scholar 

  • Thompson HM, Walker CH, Hardy AR (1991) Changes in activity of avian serum esterases following exposure to organophosphorous insecticides. Arch Environ Contam Toxicol 20:514–518.

    Article  CAS  Google Scholar 

  • Vilanova E, Sogorb MA (1999) The role of phosphotriesterases in the detoxification of organophosphorous compounds. Crit Rev Toxicol 29:21–57.

    Article  PubMed  CAS  Google Scholar 

  • Walker CH (1995) Biochemical biomarkers in ecotoxicology—some recent developments. Sci Total Environ 171:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Walker CH (1998a) The use of biomarkers to measure the interactive effects of chemicals. Ecotoxicol Environ Saf 40:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Walker CH (1998b) Biomarker strategies to evaluate the environmental effects of chemicals. Environ Health Perspect 106:613–620.

    PubMed  CAS  Google Scholar 

  • Walker CH, Hopkin SP, Sibly RM, Peakall DB (2001) Principles of Ecotoxicology, 2nd Ed., Taylor & Francis, London.

    Google Scholar 

  • White DH, King KA, Mitchell CA, Hill EF (1979) Parathion causes secondary poisoning in a laughing gull breeding colony. Bull Environ Contam Toxicol 23:281–284.

    Article  PubMed  CAS  Google Scholar 

  • White DH, Mitchell CA, Hill EF (1983) Parathion alters incubation behavior of laughing gulls. Bull Environ Contam Toxicol 31:93–97.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MF, Kendall RJ (1998) Age-dependent toxicity of diazinon and terbufos in European starlings (Sturnus vulgaris) and red-winged blackbirds (Agelaius phoeniceus). Environ Toxicol Chem 17:1300–1312.

    CAS  Google Scholar 

  • Yu M-H (2001) Environmental Toxicology: Impacts of Environmental Toxicants on Living Systems. Lewis, New York.

    Google Scholar 

  • Zinkl JG, Henny CJ, DeWeese LR (1977) Brain Cholinesterase activities of birds from forest sprayed with trichlorfon (Dylox) and carbaryl (Sevin-4-oil). Bull Environ Contam Toxicol 17:379–386.

    Article  PubMed  CAS  Google Scholar 

  • Zinkl JG, Shea PJ, Nakamoto RJ, Callman J (1987) Effects of cholinesterases of rainbow trout exposed to acephate and methamidophos. Bull Environ Contam Toxicol 38: 22–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this chapter

Cite this chapter

Sanchez-Hernandez, J.C. (2001). Wildlife Exposure to Organophosphorus Insecticides. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 172. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0159-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0159-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9484-6

  • Online ISBN: 978-1-4613-0159-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics