Skip to main content

Modeling the Response of Vegetation Distribution and Biodiversity to Climate Change

  • Chapter
Book cover Global Biodiversity in a Changing Environment

Part of the book series: Ecological Studies ((ECOLSTUD,volume 152))

  • 648 Accesses

Abstract

The natural ecosystems of the world may be divided into a small set of biomes, each characterized by the dominance of one or more functional types of plants. At regional-to-global scales climate exerts a dominant influence over the distribution of these plant functional types (Woodward 1987). Smaller-scale variations in distribution may be controlled by smaller-scale features of the environment (e.g., soils and topography). Specific climatic controls on the distribution of these dominant plant functional types may be categorized as ecophysiological constraints, resource availability, and competition mediated by the effects of climate. Ecophysiological constraints on individual plant functional types account for the gross qualitative features of biome distribution, and such constraints have been incorporated into a number of rule-based vegetation models (Woodward 1987); (Neilson et al. 1992); (Prentice et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Woodward FI (1989) Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature 339:699–701.

    Article  Google Scholar 

  • Al Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977) A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65:759–791.

    Article  Google Scholar 

  • Bartlein PJ, Prentice IC, Webb T III (1986) Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography 13:35–57.

    Article  Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1995) Hurricane-type vortices in a general circulation model. Tellus 47A: 1751–1796.

    Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A:57–73.

    Google Scholar 

  • Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. Journal of Ecology 60:849–872.

    Article  Google Scholar 

  • Bugmann HKM, Solomon AM (1995) The use of a European forest model in North America: a study of ecosystem response to climate gradients. Journal Biogeography 22:477–484.

    Article  Google Scholar 

  • Bugmann HKM, Xiaodong Y, Sykes MT, Martin P, Linder M, Desanker P, et al. (1996) A comparison of forest gap models: model structure and behaviour. Climatic Change 34:289–313.

    Google Scholar 

  • Clark JS (1989) Ecological disturbance as a renewal process: theory and application to fire history. Oikos 56:17–30.

    Article  Google Scholar 

  • Cody ML (1975) Towards a theory of continental species diversities. In: Cody ML, Diamond JM (eds) Ecology and Evolution of Communities, pp. 214–257. Belknap, Cambridge, MA.

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Broukin V, et al. (2001) Global response of terrestrial ecosystem structure and function to Co2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7:357–374.

    Article  Google Scholar 

  • Currie DJ (1991) Energy and large-scale patterns of animal and plant species richness. American Naturalist 137:27–49.

    Article  Google Scholar 

  • Currie DJ, Paquin V (1987) large-scale biogeographical patterns of species richness of trees. Nature 329:326–327.

    Article  Google Scholar 

  • Desanker PV, Prentice IC (1994) MIOMBO—a vegetation dynamics model for the Miombo woodlands of Zambian Africa. Forest Ecology and Management 69:87–96.

    Article  Google Scholar 

  • Foley JA (1994) Net primary productivity in the terrestrial biosphere: the application of a global model. Journal of Geophysical Research 99:20773–20783.

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Have Hine, A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10:603–628.

    Article  CAS  Google Scholar 

  • Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. Global Change Biology 4:561–579.

    Article  Google Scholar 

  • Harrison SP (1990) An Introduction to General Circulation Modelling Experiments with Raised CO 2. WP-90-27. International Institute of Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Hawksworth DL, Kalin-Arroyo MT (1995) Magnitude and distribution of Biodiversity. In: Heywood VH, et al. (eds) Global Biodiversity Assessment, pp. 107–173. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10:693–709.

    Article  CAS  Google Scholar 

  • Haxeltine A, Prentice IC, Cresswell ID (1996) A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7:651–666.

    Article  Google Scholar 

  • Heywood VH (ed) (1979) Flowering plants of the world. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Hora B (ed) (1981) The Oxford Encyclopaedia of Trees of the World. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Huntley B, Berry PM, Cramer W, McDonald P (1995) Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography 22:967–1001.

    Article  Google Scholar 

  • Kienast F (1987) FORECE—A Forest Succession Model for Southern central Europe. Oak Ridge National Laboratory, Oak Ridge, ORNL/TM-10575, 69 pp.

    Google Scholar 

  • Lantham RE, Ricklefs RE (1993) Continental comparisons of temperate-zone tree species diversity. In: Ricklefs RE, Schluter D (eds) Species Diversity: Historical and Geographical Perspectives, pp. 178–184. University of Chicago Press, Chicago.

    Google Scholar 

  • Larcher W (1983) Physiological Plant Ecology. Second ed. Springer-Verlag, Berlin.

    Google Scholar 

  • Leemans R (1991) Sensitivity analysis of a general forest succession model. Ecological Modelling 53:247–262.

    Article  Google Scholar 

  • Leemans R, Cramer W (1991) The USAS climate database for land area on a grid of 0.5 resolution. WP-41 International Institute of Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240.

    Article  CAS  Google Scholar 

  • Melillo JM, Prentice IC, Schulze E-D, Farquhar GD, Sala OE (1996) Terrestrial ecosystems: biotic feedbacks to climate. In: Houghton J, et al. (eds) Climate Change: The IPCC1995 Assessment. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mooney HA, Lubchenco J, Dirzo R, Sala OE (1995) Biodiversity and ecosystem functioning: basic principles. In: Heywood VH (ed) Global Biodiversity Assessment, pp. 279–325. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Neilson RP (1995) A model for predicting continental scale vegetation distribution and water balance. Ecological Applications 5:362–386.

    Article  Google Scholar 

  • Neilson RP, King GA, Koerper G (1992) Towards a rule-based biome model. Landscape Ecology 7:27–43.

    Article  Google Scholar 

  • Nix HA, Switzer MA (1991) Rainforest animals: atlas of vertebrates endemic to Australia’s wet tropics. Kopwari 1:112.

    Google Scholar 

  • Ojima DS, Galvin KA, Turner BL II (1994) The global impact of land-use change. Bioscience 44:300–304.

    Article  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, et al. (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7: 785–809.

    Article  CAS  Google Scholar 

  • Pianka ER (1967) On lizard species diversity: North American flatland deserts. Ecology 48:333–351.

    Article  Google Scholar 

  • Pitelka L, the Plant Migration Workshop Group (Ash J, Berry S, Bradshaw RHW, Brubaker LB, Clark J, Davis MB, et al.) (1997) Plant migration and climate change. American Scientist 85:464–473.

    Google Scholar 

  • Prentice IC, Leemans R (1990) Pattern and process and the dynamics of forest structure: a simulation approach. Journal of Ecology 78:340–355.

    Article  Google Scholar 

  • Prentice IC, Sykes MT (1995) Vegetation geography and global carbon storage changes. In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climatic System: Will the Warming Speed the Warming] pp. 304–312. Oxford University Press, New York.

    Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1991) The possible dynamic response of northern forests to global warming. Global Ecology and Biogeography Letters 1:129–135.

    Article  Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1993) A simulation model for the transient effects of climatic change on forest landscapes. Ecological Modelling 65:51–70.

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19:117–134.

    Article  Google Scholar 

  • Prentice IC, Sykes MT, Lautenschlager M, Harrison SP, Dennisenko O, Bartlein PJ (1993) Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecology and Biogeography Letters 3:67–76.

    Article  Google Scholar 

  • Price DT, Apps MJ, Kurz WA, Prentice IC, Sykes MT (1993) Simulating the carbon budget of the Canadian boreal forest using an integrated suite of process-based models. In: Chhun-Huor Ung (ed) Forest Growth Models and their Uses, pp. 251–264. Canadian Forest Service.

    Google Scholar 

  • Richerson PJ, Lumm K (1980) Patterns of plant species diversity in California: relation to weather and topography. American Naturalist 116:504–536.

    Article  Google Scholar 

  • Rosenzweig ML, Abramsky Z (1993) How are diversity and productivity related? In: Ricklefs RE, Schluter D (eds) Species Diversity: Historical and geographical perspectives, pp. 52–65. University of Chicago Press, Chicago.

    Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologie balance, canopy gas exchange and primary production processes. Ecological Modelling 42:125–154.

    Article  CAS  Google Scholar 

  • Sisk TD, Launer AE, Switky KR, Ehrlich PR (1994) Identifying extinction threats. Bioscience 44:592–604.

    Article  Google Scholar 

  • Sitch S (2000) The role of vegetation dynamics in the control of atmospheric Co2 content. PhD Thesis, Lund University, Lund, Sweden.

    Google Scholar 

  • Sykes MT (1997) The biogeographic consequences of forecast changes in the global environment: Individual species’ potential range changes. In: Huntley B, Cramer W, Morgan AV, Prentice HC, Allen JRM (eds) Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota, pp. 427–440. NATO ASI series, Springer-Verlag, Berlin.

    Google Scholar 

  • Sykes MT, Prentice IC (1995) Boreal forest futures: modelling the controls on tree species range limits and transient responses to climate change. Water, Air, Soil and Pollution 82:415–428.

    Article  CAS  Google Scholar 

  • Sykes MT, Prentice IC (1996) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifers/northern hardwoods zone of northern Europe. Climatic Change 34:161–177.

    Article  Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distribution of northern European tree species under present and future climates. Journal of Biogeography 23:203–233.

    Google Scholar 

  • Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species Diversity: Historical and Geographical Perspectives, pp. 13–25. University of Chicago Press, Chicago.

    Google Scholar 

  • Turner JRG, Lennon JJ, Lawrenson JA (1988) British bird distributions and the energy theory. Nature 335:539–541.

    Article  Google Scholar 

  • Urban DL (1990) A Versatile Model to Simulate Forest Pattern: A Users Guide to Zelig 1.0. University of Virginia, Dept. of Environmental Sciences, Charlottesville, VA. 108 pp.

    Google Scholar 

  • VEMAP members 1995. Vegetation/ecosystem mapping and analysis project (VEMAP): a comparison of biogeography and biogeochemistry models in the context of global change. Global Biogeochemical Cycles 9:407–437.

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. Journal of Ecology 35:1–22.

    Article  Google Scholar 

  • Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Woodward FI, Rochefort L (1991) Sensitivity analysis of vegetation diversity to environmental change. Global Ecology and Biogeography Letters 1:7–23.

    Article  Google Scholar 

  • Woodward FL, Smith TM (1994) Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate. Botanical Research 20:1–41.

    Article  Google Scholar 

  • Woodward FL, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9:471–490.

    Article  CAS  Google Scholar 

  • Wright DH, Currie DJ, Maurer BA (1993) Energy supply and patterns of species richness on local and regional scales. In: Ricklefs RE, Schluter D (eds) Species Diversity: Historical and Geographical Perspectives, pp. 66–74. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sykes, M.T., Haxeltine, A. (2001). Modeling the Response of Vegetation Distribution and Biodiversity to Climate Change. In: Chapin, F.S., Sala, O.E., Huber-Sannwald, E. (eds) Global Biodiversity in a Changing Environment. Ecological Studies, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0157-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0157-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95286-4

  • Online ISBN: 978-1-4613-0157-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics