Skip to main content

Deserts

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 152))

Abstract

Arid and semi-arid lands cover about one third of the earth’s terrestrial surface. They are commonly perceived as hostile and barren places; in fact, they are heavily used by human populations. Direct and indirect effects of human activities in arid ecosystems will become increasingly important over the next few decades, and these effects will act on existing patterns of biodiversity in dryland regions. Extreme and severe environments have led to evolution of considerable biodiversity and unique biotic adaptations, some of which are of significant potential value in human terms (Huenneke and Noble 1996). Global changes in climate, land use, population density, and consumption threaten to cause two types of changes in arid and semi-arid Systems: changes within existing deserts and conversions to or from other cover types. In this chapter I will consider first the patterns and extent of diversity in arid ecosystems, ranging from true hot deserts to temperate semi-deserts and shrub-steppe. I will then discuss the major mechanisms by which global change should affect drylands. I will outline the scenarios for change and the predictions for conversion among types and discuss how these changes might affect diversity of desert organisms at local and regional levels, with a focus on patterns of species richness. Finally, I will briefly discuss how these changes in biodiversity might be expected to affect ecosystem function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allred KW (1997) A Field Guide to the Flora of the Jornada Piain, Second Edition. New Mexico State University Range Herbarium, Las Cruces, NM.

    Google Scholar 

  • Anable ME, McClaran MP, Ruyle GB (1992) Spread of introduced Lehmann love-grass, Eragrostis lehmanniana, in southern Arizona, USA. Biological Conservation 61:181–188.

    Article  Google Scholar 

  • Bachelet D, Wondzell SM, Reynolds JF (1988) A Simulation model using environmental clues to predict phenologies of winter and summer annuals in the northern Chihuahuan Desert. In: Marani A (ed) Advances in Environmental Modelling, pp. 235–260. Elsevier, Amsterdam.

    Google Scholar 

  • Bahre CJ, Shelton ML (1993) Historie Vegetation change, mesquite increases, and climate in southeastern Arizona. Journal of Biogeography 20:489–504.

    Article  Google Scholar 

  • Braun Wilke RH (1982) Net primary produetivity and nitrogen and carbon distribution in two xerophytic communities of central-west Argentina. Plant and Soil 67:315–323.

    Article  Google Scholar 

  • Brown JH (1975) Geographical ecology of desert rodents. In: Cody M, Diamond J (eds) The Ecology and Evolution of Communities, pp. 315–341. Belknap Press/Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Brown JH (1993) Assessing the effects of global change on animals in western North America. In: Mooney HA, Fuentes ER, Kronberg BI (eds) Earth System Responses to Global Change, pp. 267–284. Academic Press, San Diego.

    Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial Variation in abundance. Ecology 76:2028–2043.

    Article  Google Scholar 

  • Brown JH, Valone TJ, Curtin CG (1997) Reorganization of an arid ecosystem in response to recent climate change. Proceedings of the National Academy of Sciences 94:9729–9733.

    Article  CAS  Google Scholar 

  • Ceballos G, Brown JH (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conservation Biology 9:559–568.

    Article  Google Scholar 

  • Chang LH, Hunsaker CT, Draves JD (1992) Recent research on effects of climate change on water resources. Water Resources Bulletin 28:273–286.

    Article  Google Scholar 

  • Chaves MM, Pereira JS (1992) Water stress, CO2 and climate change. Journal of Experimental Botany 43:1131–1139.

    Article  Google Scholar 

  • Chiew FHS, Whetton PH, McMahon TA, Pittock AB (1995) Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. Journal of Hydrology 167:121–147.

    Article  Google Scholar 

  • Cole DR, Monger HC (1991) Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368:533–536.

    Article  Google Scholar 

  • Conley W, Conley MR, Karl TR (1992) A computational study of episodic events and historical context in long-term ecological processes: climate and grazing in the northern Chihuahuan Desert. Coenoses 7:1–19.

    Google Scholar 

  • Cooke R, Warren A, Goudie A (1993) Desert Geomorphology. UCL Press, London.

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63–87.

    Google Scholar 

  • Daily GC (1995) Restoring value to the world’s degraded lands. Science 269:350–354.

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis DL, Cushman RM (1990) Potential applications of modeis in forecasting the effects of climate change on fisheries. Transactions of the American Fisheries Society 119:224–239.

    Article  Google Scholar 

  • Dregne HE, Tucker J (1988) Green biomass and rainfall in semi-arid sub-Saharan Africa. Journal of Arid Environments 15:245–252.

    Google Scholar 

  • Ellner S, Shmida A (1981) Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia 51:133–144.

    Article  Google Scholar 

  • FAUNMAP Working Group (1996) Spatial response of mammals to Late Quaternary environmental fluctuations. Science 272:1601–1606.

    Article  Google Scholar 

  • Field CB, Chapin FS III, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Review of Ecology and Systematics 23:201–235.

    Article  Google Scholar 

  • Fisher FM, Zak JC, Cunningham GL, Whitford WG (1988) Water and nitrogen effects on growth and allocation patterns of creosote bush in the northern Chihuahuan desert. Journal of Range Management 41:387–391.

    Article  Google Scholar 

  • Franco AC, Nobel PS (1989) Effect of nurse plants on the microhabitat and growth of cacti. Journal of Ecology 77:870–886.

    Article  Google Scholar 

  • Freas KE, Kemp PR (1983) Some relationships between environmental reliability and seed dormancy in desert annual plants. Journal of Ecology 71:211–217.

    Article  Google Scholar 

  • Freeland WJ (1990) Large herbivorous mammals—exotic species in northern Australia. Journal of Biogeography 17:445–4150.

    Article  Google Scholar 

  • Fuhlendorf SD, Smeins FE (1999) Scaling effects of grazing in a semi-arid grassland. Journal of Vegetation Science 10:731–738.

    Article  Google Scholar 

  • Gasse F, Tehet R, Durand A, Gibert E, Fontes J-C (1990) The arid-humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346:141–146.

    Article  Google Scholar 

  • Graetz RD (1991) The nature and significance of the feedback of changes in terres-trial Vegetation on global atmospheric and climatic change. Climatic Change 18:147–173.

    Article  Google Scholar 

  • Grenot CJ (1974) Physical and vegetational aspects of the Sahara Desert. In: Brown GW Jr. (ed) Desert Biology, Volume II, pp. 103–164. Academic Press, NY.

    Google Scholar 

  • Gutierrez JR, Whitford WG (1987) Chihuahuan Desert annuals: importance of water and nitrogen. Ecology 68:2032–2045.

    Article  Google Scholar 

  • Hanan NP, Prevost Y, Diouf A, Diallo O (1991) Assessment of desertification around deep wells in the Sahel using satellite imagery. Journal of Applied 28:173–186.

    Google Scholar 

  • Hastings JR, Turner RM (1965) The Changing Mile: An Ecologicakl Study of Vegtation Change with Time in the Tower Mile of an Arid and Semi-Arid Region. University of Arizona Press, Tucson, AZ.

    Google Scholar 

  • Herbei CH, Gibbens RP (1996) Post-drought Vegetation dynamics on arid rangelands of southern New Mexico. Bulletin 776, New Mexico State University Agricultural Experiment Station, Las Cruces, NM.

    Google Scholar 

  • Hernandez HM, Barcenas RT (1996) Endangered cacti in the Chihuahuan Desert, II. Biogeography and conservation. Conservation Biology 10:1200–1209.

    Article  Google Scholar 

  • Herrick JE, Whitford WG (1995) Assessing the quality of rangeland soils: challenges and opportunities. Journal of Soil and Water Conservation 50:237–242.

    Google Scholar 

  • Huenneke LF, Noble I (1996) Ecosystem function of biodiversity in arid ecosystems. In: Mooney HA, Cushman JH, Medina E, Sala OE, Schulze E-D (eds) Functional Roles of Biodiversity: A Global Perspective, pp. 99–128. SCOPE/UNEP. John Wiley and Sons, Chichester.

    Google Scholar 

  • Inouye RS (1991) Population biology of desert annual plants. In: Polis GA (ed) The Ecology of Desert Communities, pp. 27–54. University of Arizona Press, Tucson, AZ.

    Google Scholar 

  • Jackson LL, McAuliffe JR, Roundy BA (1991) Desert restoration. Restoration and Management Notes 9:71–79.

    Google Scholar 

  • Jain JK (1986) Combating Desertification in Developing Countries. UN EP, Scientific Reviews on Arid Zone Research, Volume 4. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • Johnson HB, Polley HW, Mayeux HS (1993) Increasing CO2 and plant-plant interactions: effects on natural Vegetation. Vegetatio 104/105:157–170.

    Article  Google Scholar 

  • Kauffman JB, Krueger WC (1984) Livestock impacts on riparian ecosystems and streamside management implications: a review. Journal of Range Management 37:430–438.

    Article  Google Scholar 

  • Kelt DA, Brown JH, Heske EJ, Marquet PA, Morton SR, Reed JRW, et al. (1996) Community structure of desert small mammals: comparisons across four continents. Ecology 77:746–761.

    Article  Google Scholar 

  • Kerley GIH, Erasmus T (1992) Fire and the ränge limits of the bush Karoo rat Otomys unisulcatus. Global Ecology and Biogeography Letters 2:11–15.

    Article  Google Scholar 

  • Kieft TL, White CS, Loftin SR, Aguilar R, Craig JA, Skaar DA (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology 79:671–683.

    Google Scholar 

  • Kovda VA, Samoilova EM, Charley JL, Skujins JJ (1979) Soil processes in arid lands. In: Goodall DW, Perry RA, Howes KMW (eds) Arid-Land Ecosystems: Structure, Functioning, and Management, Volume 1, pp. 439–470. International Biological Programme, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Le Houérou HN (1984) Rain use efficiency: a unifying concept in arid-land ecology. Journal of Arid Environments 7:213–247.

    Google Scholar 

  • Long SP, Hutchin PR (1991) Primary production in grasslands and forests with climate change: an overview. Ecological Applications 1:139–156.

    Article  Google Scholar 

  • Lonsdale WM (1994) Inviting trouble: introduced pasture species in northern Australia. Australian Journal of Ecology 19:345–354.

    Article  Google Scholar 

  • Louw GN, Seely MK (1982) Ecology of Desert Organisms. Longman, London.

    Google Scholar 

  • Mabbutt JA (1989) Impacts of carbon dioxide warming on climate and man in the semi-arid tropics. Climatic Change 15:191–221.

    Article  CAS  Google Scholar 

  • Mack RN (1986) Alien plant invasion into the intermountain west: a case history. In: Mooney HA, Drake JA (eds) Ecology of Biological Invasions of North America and Hawaii, pp. 191–213. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • MacMahon JA, Wagner FH (1985) The Mojave, Sonoran and Chihuahuan Deserts of North America. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot Deserts and Arid Shrublands, A. Ecosystems of the World, Volume 12A, pp. 105–202. Elsevier, Amsterdam.

    Google Scholar 

  • McAuliffe JR (1988) Markovian dynamics of simple and complex desert plant communities. American Naturalist 131:459–490.

    Article  Google Scholar 

  • McAuliffe JR (1994) Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert bajadas. Ecological Monographs 64:111–148.

    Article  Google Scholar 

  • Meyer WB, Turner BL II (1992) Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics 23:39–61.

    Article  Google Scholar 

  • Milchunas DG, Lauenroth WK (1995) Inertia in plant community structure: state changes after cessation of nutrient-enrichment stress. Ecological Applications 5:452–458.

    Article  Google Scholar 

  • Miller B, Ceballos G, Reading R (1994) The prairie dog and biotic diversity. Conservation Biology 8:677–681.

    Article  Google Scholar 

  • Mitchell JFB, Warrilow DA (1987) Summer dryness in northern mid-latitudes due to increased CO2. Nature 330:238–240.

    Article  Google Scholar 

  • Mourelle C, Ezcurra E (1996) Species richness of Argentine cacti: a test of biogeographic hypotheses. Journal of Vegetation Science 7:667–680.

    Article  Google Scholar 

  • Muth A (1980) Physiological ecology of desert iguana (Dipsosaurus dorsalis) eggs: temperature and water relations. Ecology 61:1335–1343.

    Article  Google Scholar 

  • Myers N (1995) Environmental unknowns. Science 269:358–360.

    Article  PubMed  CAS  Google Scholar 

  • Neilson RP (1986) High-resolution climatic analysis and southwest biogeography. Science 232:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics 4:25–51.

    Article  Google Scholar 

  • Orians GH, Solbrig OT (1977) A cost-income model of leaves and roots with special reference to arid and semiarid areas. American Naturalist 111:677–690.

    Article  Google Scholar 

  • Pake CE, Venable DL (1995) Is coexistence of Sonoran Desert annuals mediated by temporal variability in reproductive success? Ecology 76:246–261.

    Article  Google Scholar 

  • Pianka ER (1979) Diversity and niche structure in desert communities. In: Goodall DW, Perry RA, Howes KMW (eds) Arid-Land Ecosystems: Structure, Functioning, and Management, Volume 1, pp. 321–341. International Biological Programme, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350.

    Article  PubMed  CAS  Google Scholar 

  • Polis GA (1991) Desert communities: an overview of patterns and processes. In: Polis GA (ed) The Ecology of Desert Communities, pp. 1–26. University of Arizona Press, Tucson, AZ.

    Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS (1994) Increasing CO2: comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75:976–988.

    Article  Google Scholar 

  • Pugnaire FI, Haase P, Puigdefábregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77:1420–1426.

    Article  Google Scholar 

  • Reichman OJ, Smith SC (1990) Burrows and burrowing behavior by mammals. In: Genoways HH (ed) Current Mammalogy, Volume 2, pp. 197–244. Plenum Press, New York.

    Google Scholar 

  • Reynolds JF, Virginia RA, Schlesinger WH (1997) Defining functional types for models of desertification. In: Smith TM, Shugart HH, Woodward IA (eds) Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change, pp. 195–216. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rind D, Goldberg R, Hansen J, Rosenzweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. Journal of Geophysical Research (Sect. D) 95:9983–10004.

    Article  Google Scholar 

  • Rochefort L, Woodward FI (1992) Effects of climate change and a doubling of CO2 on vegetation diversity. Journal of Experimental Botany 43:1169–1180.

    Article  Google Scholar 

  • Roundy BA, Biedenbender SH (1995) Revegetation in the desert grassland. In: McClaran MP, Van Devender TR (eds) The Desert Grassland, pp. 265–303. University of Arizona Press, Tucson, AZ.

    Google Scholar 

  • Safriel UN (1987) The stability of the Negev Desert ecosystems: why and how to investigate it. In: Berkofsky L, Wurtele MG (eds) Progress in Desert Research, pp. 133–144. Rowman and Littlefield Publishers, Totowa, NX

    Google Scholar 

  • Sala OE, Lauenroth WK, Golluscio RA (1997) Plant functional types in temperate arid regions. In: Smith TM, Shugart HH, Woodward IA (eds) Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change, pp. 217–233. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, et al. (1990) Biological feedbacks in global desertification. Science 247:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374.

    Article  Google Scholar 

  • Seely MK (1991) Sand dune communities. In: Polis GA (ed) The Ecology of Desert Communities, pp. 348–382. University of Arizona Press, Tucson, AZ.

    Google Scholar 

  • Shachak M, Lovett GM (1998) Atmospheric deposition to a desert ecosystem and its implications for management. Ecological Applications 8:455–463.

    Article  Google Scholar 

  • Shachak M, Brand S, Gutterman Y (1991) Porcupine disturbance and vegetation pattern along a resource gradient in a desert. Oecologia 88:141–147.

    Article  Google Scholar 

  • Shmida A, Evenari M, Noy-Meir I (1985) Hot desert ecosystems: an integrated view. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot Deserts and Shrublands, A. Ecosystems of the World, Volume 12A, pp. 379–387. Elsevier, Amsterdam.

    Google Scholar 

  • Shugart HH, Smith TM, Post WM (1992) The potential for application of individual-based simulation models for assessing the effects of global change. Annual Review of Ecology and Systematics 23:15–38.

    Google Scholar 

  • Stohlgren TJ, Schell LD, Vanden Heuvel B (1999) How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands. Ecological Applications 9:45–64.

    Article  Google Scholar 

  • Suzan H, Nabhan GP, Patten DT (1996) The importance of Olneya tesota as a nurse plant in the Sonoran Desert. Journal of Vegetation Science 7:635–644.

    Article  Google Scholar 

  • Tucker CJ, Dregne HE, Newcomb WW (1991) Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253:299–301.

    Article  PubMed  CAS  Google Scholar 

  • Vogel JC, Fuls A, Danin A (1986) Geographical and environmental distribution of C3 and C4 grasses in the Sinai, Negev, and Judean deserts. Oecologia 70:258–265.

    Article  Google Scholar 

  • Weltzin JF, Archer S, Heitschmidt RK (1997) Small-mammal regulation of vegetation structure in a temperate savanna. Ecology 78:751–763.

    Article  Google Scholar 

  • Werger MJA (1986) The Karoo and Southern Kalahari. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot Deserts and Arid Shrublands, B. Ecosystems of the World, Volume 12B, pp. 283–359. Elsevier, Amsterdam.

    Google Scholar 

  • West NE (1979) Formation, distribution and function of plant litter in desert ecosystems. In: Goodall DW, Perry RA, Howes KMW (eds) Arid-Land Ecosystems: Structure, Functioning, and Management, Volume 1, pp. 647–659. International Biological Programme. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • West NE (1983a) Overview of North American temperate deserts and semi-deserts. In: West NE (ed) Temperate Deserts and Semi-Deserts. Ecosystems of the World, Volume 5, pp. 321–330. Elsevier, Amsterdam.

    Google Scholar 

  • West NE (1983b) Comparisons and contrasts between the temperate deserts and semi-deserts of three continents. In: West NE (ed) Temperate Deserts and Semi-Deserts. Ecosystems of the World, Volume 5, pp. 461–472. Elsevier, Amsterdam.

    Google Scholar 

  • Whitford WG (1976) Temporal fluctuations in density and diversity of desert rodent populations. Journal of Mammalogy 57:351–369.

    Article  Google Scholar 

  • Whitford WG (1993) Animal feedbacks in desertification: an overview. Revista Chilena de Historia Natural 66:243–251.

    Google Scholar 

  • Whitford WG (1997) Desertification and animal biodiversity in the desert grasslands of North America. Journal of Arid Environments 37:709–720.

    Article  Google Scholar 

  • Williamson M (1996) Biological Invasions. Chapman and Hall, London.

    Google Scholar 

  • Wondzell SM, Cunningham GL, Bachelet D (1987) A hierarchical classification of landforms: some implications for understanding local and regional vegetation dynamics. Strategies for classification and management of native vegetation for food production in arid zones. In: Gonzales EF, Vicente CE, Moir WE, Aldon H (eds) General Technical Report, U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station.

    Google Scholar 

  • Wurtele MG (1987) The meteorology of desertification. In: Berkofsky L, Wurtele MG (eds) Progress in Desert Research, pp. 245–259. Rowman and Littlefield Publishers, Totowa, NJ.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huenneke, L.F. (2001). Deserts. In: Chapin, F.S., Sala, O.E., Huber-Sannwald, E. (eds) Global Biodiversity in a Changing Environment. Ecological Studies, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0157-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0157-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95286-4

  • Online ISBN: 978-1-4613-0157-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics