Creep Fracture Mechanics

  • Dominique P. Miannay
Part of the Mechanical Engineering Series book series (MES)

Abstract

We consider a homogeneous, isotropic body containing a crack and subjected to external loading. To this crack is associated the usual coordinate system. This body is of a creeping material.

We present in succession the stress-and-strain singularities in the vicinity of the crack, which is at first stationary, and then moving. These singularities are described with the help of various loading parameters. Experimental correlation of initiation of extension and growth with these parameters are presented with their shortcomings. Then various relations between micromechanisms and macromechanics are given in the case of one controlling micromechanism and one creep law, which is the secondary-creep law. Finally, damage-continuum mechanics are presented.

Keywords

Fatigue Chromium Argon Propa Brittle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Miannay. “Fracture Mechanics,” Springer-Verlag, New York (1998).CrossRefGoogle Scholar
  2. 2.
    S. M. Sharma, N. Aravas and M. G. Zelman. “Two parameter characterization of crack tip fields in edge-cracked geometries; Plasticity and creep solutions,” in “Fracture Mechanics: 25th volume, ASTM STP 1220,” Erdogan, ed., American Society for Testing and Materials, Philadelphia, pp. 309–327 (1995).CrossRefGoogle Scholar
  3. 3.
    H. Riedel. “Cracks loaded in anti-plane shear under creep conditions,” Z. für Metallkunde, 69, pp. 755–760 (1978).Google Scholar
  4. 4.
    H. Riedel H. and J. R. Rice. “Tensile cracks in creeping solids,” in “Fracture mechanics, Twelfth conference,” ASTM STP 700, American Society for Testing and Materials, Philadelphia, pp. 112–130 (1980).Google Scholar
  5. 5.
    J. D. Landes and J. A. Begley. “A fracture mechanics approach to creep crack growth,” in “Mechanics of crack growth,” ASTM STP 590, American Society for Testing and Materials, Philadelphia, pp. 128–148 (1976).CrossRefGoogle Scholar
  6. 6.
    J. L. Bassani and F. A. McClintock. “Creep relaxation of stress around a crack tip,” Int. J. Solids and Struct., 7, pp. 479–492 (1981).CrossRefGoogle Scholar
  7. 7.
    K. Ohji, K. Ogura and S. Kubo. “Stress-strain field and modified J-Integral in the vicinity of a crack tip under transient creep conditions,” J. Soc. Mater. Sci. Japan, 29, No. 320, pp. 465–471 (1980).CrossRefGoogle Scholar
  8. 8.
    J. Hult. “On the stationarity of stress and strain distributions in creep,” in “Proceedings of the International Symposium on Second Order Effects in Elasticity, Plasticity and Fluid Mechanics,” (Haifa, Israël, April 1962), Reiner and Abir, eds., Pergamon Press, Oxford, pp. 352–361 (1964).Google Scholar
  9. 9.
    H. Riedel. “Creep deformation at crack tips in elastic-viscoplastic solids,” J. Mech. Phys. Solids, 29, pp. 35–49 (1981).MATHCrossRefGoogle Scholar
  10. 10.
    R. Ehlers and H. Riedel. “A finite element analysis of creep deformation in a specimen containing a macroscopic crack,” in “Advances in fracture research, ICF 5, Vol. 2,” Fran90is et aI., eds., Pergamon Press, Oxford, pp. 691–698 (1981).Google Scholar
  11. 11.
    H. Riedel. “Fracture at high temperatures,” Springer-Verlag, Heidelberg (1987).Google Scholar
  12. 12.
    J. loch and R. A. Ainsworth. “The effect of geometry on the development of creep singular fields for defects under step-load controlled loading,” Fatigue Fract. Engng. Mater. Struct., 15, pp. 229–240 (1992).CrossRefGoogle Scholar
  13. 13.
    R. A. Ainsworth and P. J. Budden. “Crack tip field under non-steady creep conditions-I. Estimates of the amplitude of the fields,” Fatigue Fract. Engng. Mater. Struct., 13, pp. 263–276 (1990).CrossRefGoogle Scholar
  14. 14.
    G. A. Webster and R. A. Ainsworth. “High temperature component life assessment,” Chapman & Hall, London (1994).Google Scholar
  15. 15.
    H. Riedel and V. Detampel. “Creep crack growth in ductile, creep-resistant steels,” lnt. J. Fracture, 33, pp. 239–262 (1987).CrossRefGoogle Scholar
  16. 16.
    H. Riedel. “Creep crack growth,” in “Fracture mechanics: Perspectives and directions (20th symposium),” ASTM STP 1020, pp. 10 1–126 (1989).Google Scholar
  17. 17.
    A. Saxena. “Creep crack growth under non-steady state conditions,” in “Fracture Mechanics, Proceedings of the 17th conference,” ASTM STP 905, Underwood et al., eds., American Society for Testing and Materials, Philadelphia, pp. 185–201 (1986).Google Scholar
  18. 18.
    J. L. Bassani, D. E. Hawk and A. Saxena. “Evaluation of the Ct parameter for characterizing creep crack growth rate in the transient regime,” in “Nonlinear fracture mechanics: Volume I-Time dependent fracture,” ASTM STP 995, Saxena et al., eds., American Society for Testing and Materials, Philadelphia, pp. 7–26 (1989).Google Scholar
  19. 19.
    C. P. Leung, D. L. McDowell and A. Saxena. “A numerical study of non-steady state creep at stationary crack tips,” in “Nonlinear fracture mechanics: Volume 1-Time dependent fracture,” ASTM STP 995, Saxena et al., eds., American Society for Testing and Materials, Philadelphia, pp. 55–67 (1989)Google Scholar
  20. 20.
    L. Chun-Pok and D. L. McDowell. “Inclusion of primary creep in the estimation of the CT parameter,” Int. J. Fracture, 46, pp. 81–104 (1990).CrossRefGoogle Scholar
  21. 21.
    C. Y. Hui and H. Riedel. “The asymptotic stress and strain field near the tip of a growing crack under creep conditions,” Int. J. Fracture, 17, pp. 409–425 (1981).CrossRefGoogle Scholar
  22. 22.
    E. W. Hart. “A theory for stable crack extension rates in ductile materials,” Int. J. Solids and Struct., 16,9, pp. 807–823 (1980).MATHCrossRefGoogle Scholar
  23. 23.
    H. Riedel and W. Wagner. “The growth of macroscopic cracks in creeping materials,” in “Advances in fracture research, Proceedings of rCF 5, Vol.2,” Fran~ois et al., eds., Pergamon Press, Oxford, pp. 683–690 (1981).Google Scholar
  24. 24.
    C. Y. Hui. “Steady-state crack growth in elastic power-law creeping materials,” in “Elastic-plastic fracture: Second symposium, Vol. I-Inelastic crack analysis, ASTM STP 803,” Shih and Gudas, eds., American Society for Testing and Materials, pp. 1–573–1–593 (1983).Google Scholar
  25. 25.
    D. E. Hawk and J. L. Bassani. “Transient crack growth under creep conditions,” J. Mech. Phys. Solids, 34, pp. 191–212 (1986).CrossRefGoogle Scholar
  26. 26.
    F. H. Wu, J. L. Bassani and V. Vitek. “Transient crack growth under creep conditions due to grain-boundary cavitation,” J. Mech. Phys. Solids, 34, 5, pp. 455–475 (1986).CrossRefGoogle Scholar
  27. 27.
    H. Riedel and W. Wagner. “Creep crack growth in Nimonic 80A and in a lCr-1I2 Mo steel,” in “Advances in fracture research’84-Proceedings of ICF 6, Vol.3,” Vall uri et aI., eds., Pergamon Press, Oxford, pp. 2199–2206 (1985).Google Scholar
  28. 28.
    P. Bensussan, R. Piques and A. Pineau. “A critical assessment of global mechanical approaches to creep crack initiation and creep crack growth in 316L steel,” in “Nonlinear fracture mechanics: Volume I-Time dependent fracture,” ASTM STP 995, Saxena et al., eds, American Society for Testing and Materials, Philadelphia, pp. 27–54 (1989).Google Scholar
  29. 29.
    R. Piques, E. Molinie and A. Pineau. “Comparison between two assessment methods for defects in the creep range,” Fatigue Fract. Engng. Mater. Struct., 14, 9, pp. 871–885 (1991).CrossRefGoogle Scholar
  30. 30.
    D. R. Hayhurst, F. A. Leckie and C. J. Morrisson. “Creep rupture of notched bars,” Proc. R. Soc., A. 360, pp. 243–264 (1978).CrossRefGoogle Scholar
  31. 31.
    D. R. Hayhurst, P. R. Dimmer and C. J. Morrison. “Development of continuum damage in the creep rupture of notched bars,” Philosophical transactions, Royal Society, London, A311, pp. 103–129 (1984).Google Scholar
  32. 32.
    D. R. Hayhurst, P. R. Brown and C. J. Morrison. “The role of continuum damage in creep crack growth,” Philosophical transactions, Royal Society, London, A311, pp. 131–158 (1984).Google Scholar
  33. 33.
    B. Ozmat, A. S. Argon and D. M. Parks. “Growth modes of cracks in creeping type 304 stainless steel,” Mechanics of Materials, 11, pp. 1–17 (1991).CrossRefGoogle Scholar
  34. 34.
    J. W. Hutchinson. “Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation,” Acta Metall., 31, pp. 1079–1088 (1983).CrossRefGoogle Scholar
  35. 35.
    K. M. Nibkin, D. J. Smith and G. A. Webster. “An engineering approach to the prediction of creep crack growth,” ASME, J. Eng. Mater. Tech., 108, pp. 186–191 (1986).CrossRefGoogle Scholar
  36. 36.
    J. L. Bassani, D. E. Hawk and F. H. Wu. “Crack growth in small scale creep,” in “Nonlinear fracture mechanics: Volume I-Time-dependent fracture, ASTM STP 995,” Saxena, Bassani and Landes, eds., American Society for Testing and Materials, Philadelphia, pp. 68–95 (1989).Google Scholar
  37. 37.
    C. Y. Hui and K. C. Wu. “Growth of macroscopic cracks by void coalescence under extensive creeping conditions,” in “Nonlinear fracture mechanics: Volume 1-Time-dependent fracture, ASTM STP 995,” Saxena, Bassani and Landes, eds., American Society for Testing and Materials, Philadelphia, pp. 96–111 (1989).Google Scholar
  38. 38.
    D. S. Wilkinson and V. Vitek. “The propagation of cracks by cavitation: a general theory,” Acta Metall., 30, pp. 1723–1732 (1982).CrossRefGoogle Scholar
  39. 39.
    A. C. F. Cocks and M. F. Ashby. “The growth of a dominant crack in a creeping material,” Scripta Metallurgica, 16, pp. 109–114 (1982).CrossRefGoogle Scholar
  40. 40.
    S. Taira, R. Othani and T. Kitamura. “Application of I-Integral to high temperature crack propagation, part I-Creep crack propagation,” Trans ASME, J. Engng. Mater. Technol., 101, pp. 154–161 (1979).CrossRefGoogle Scholar
  41. 41.
    S. Taira, R. Othani and T. Komatsu. “Application of I-Integral to high temperature crack propagation, part II-Fatigue crack propagation,” Trans ASME, J. Engng. Mater. Technol., 101, pp. 162–167 (1979).CrossRefGoogle Scholar
  42. 42.
    M. Sester, R. Mohrmann and H. Riedel. “A micromechanical model for creep damage and its application to crack growth in a 12% Cr steel,” in “Elevated temperature effects on fatigue and fracture, ASTM, STP 1297,” Piascik, Gangloff, and Saxena, eds., American Society for Testing and Materials, pp. 37–53 (1997).Google Scholar
  43. 43.
    V. Tvergaard. “Analysis of creep crack growth by grain boundary cavitation,” Int. J. Fracture, 31, pp.183–209 (1986).CrossRefGoogle Scholar
  44. 44.
    A. S. Argon, K. J. Hsia and D. M. Parks. “Growth of cracks by intergranular cavitation in creep,” in “Topics in fracture and fatigue,” Argon, ed., Springer-Verlag, NY, pp. 235–270 (1992).CrossRefGoogle Scholar
  45. 45.
    ASTM Designation: E 1457-98. “Standard test method for measurement of creep crack growth rates in metals,” American Society for Testing and Materials, Philadelphia, (1998).Google Scholar
  46. 46.
    . R. Brockenbrough, C. F. Shih and S. Suresh. “Transient crack-tip fields for mixed-mode power law creep,” Int. J. Fracture, 49, pp. 177–202 (1991).Google Scholar
  47. 47.
    A. C. Chambers, J. J. Webster and T. H. Hyde. “Stationary creep mixed mode crack tip stress fields and correlation with experimental crack growth data,” Engng. Fract. Mech., 42, 4, pp. 683–691 (1992).CrossRefGoogle Scholar
  48. 48.
    E. Churley and J. C. Earthman. “Damage Mechanics approach for predicting hightemperature crack growth under mixed-mode loading conditions,” Materials Sc. and Engng., A302, pp. 36–42 (1995).Google Scholar
  49. 49.
    D. Poquillon, M-T. Cabrillat and A. Pineau. a/ “Mode II creep crack initiation in 316 LN stainless steel: experiments and modeling,” Materials at High Temp., 16,2, pp. 99–107 (1999). b/ erratum, Materials at High Temp., 16,3, pp. 159 (1999).CrossRefGoogle Scholar
  50. 1.
    C. Y. Hui and K. C. Wu. “The mechanics of a constantly growing crack in an elastic power-law creeping material,” Int. J. Fracture, 31, pp. 3–16 (1986).CrossRefGoogle Scholar
  51. 2.
    F. W. Brust and B. Leis. “A new model for characterizing primary creep damage,” Int. J. Fracture, 54, pp. 45–63 (1992).CrossRefGoogle Scholar
  52. 3.
    V. Kuhnle and H. Riedel. “Time dependent deformation and fracture of steel between 20°C and 400°C,” Int. J. Fracture, 34, pp. 179–194 (1987).CrossRefGoogle Scholar
  53. 4.
    S. Wilkinson and S. B. Biner. “Creep crack growth simulation under transient stress fields,” Metall. Trans. A, 19A, pp. 829–835 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Dominique P. Miannay
    • 1
  1. 1.Departement d’Evaluation de SureteInstitut de Protection et de Surete NucleaireFrance

Personalised recommendations