Skip to main content

Creep Fracture: Creep Laws and Elementary Microscopic-Fracture Models

  • Chapter
Book cover Time-Dependent Fracture Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

  • 478 Accesses

Abstract

This chapter begins with some background on the theory of creep-flow behavior by dislocation motion, by defect motion, or by the combined effect of both. This elementary knowledge allows for the establishment of laws and rules of creep flow on a macroscopic scale. Then the application to a smooth body introduces the notions of skeletal-point and reference stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Frost and M. F. Ashby. “Deformation-mechanism maps, The plasticity and creep of metals and ceramics,” Pergamon Press, Oxford, (1982).

    Google Scholar 

  2. W. D. Nix, J. C. Eartham, G. Eggeler and B. Ilschner. “The principal facet stress as a parameter for predicting rupture under multiaxial stresses,” Acta Metall., 37, 4, pp. 1067–1077 (1989).

    Article  Google Scholar 

  3. W. Beere. “Stress redistribution due to grain boundary sliding during creep,” Metal Science, 16, pp. 223–227 (1982).

    Article  Google Scholar 

  4. K. H. Hsia, D. M. Parks and A. S. Argon. “Effects of grain boundary sliding on creep-constrained boundary cavitation and creep deformation,” Mech. Mater., 11, pp. 43–62 (1991).

    Article  Google Scholar 

  5. P. M. Anderson and J. R. Rice. “Constrained creep cavitation of grain boundary facets,” Acta Metall., 33, pp. 409–422 (1985).

    Article  Google Scholar 

  6. G. J. Rodin. “Stress transmission in polycrystals with frictionless grain boundaries,” Trans. ASME, J. Appl. Mech., 62, pp. 1–6 (1995).

    Article  MATH  Google Scholar 

  7. R. W. Evans and B. Wilshire. “Creep of metals and alloys,” Institute of Metals, London, (1985).

    Google Scholar 

  8. J. Lemaitre et J. L. Chaboche. “Mécanique des matériaux solides,” Dunod, Paris, 2ND edition (1988). “Mechanics of Solid Materials,” Cambridge University Press (1990).

    Google Scholar 

  9. G. A. Webster and R. A. Ainsworth. “High temperature component life assessment,” Chapman & aI., eds., London (1984).

    Google Scholar 

  10. M. F. Ashby and B. F. Dyson. “Creep damage mechanics and micromechanics,” in “Advances in fracture research-Proceedings of ICF6, Vol.1,” Valluri et al., eds., Pergamon Press, Oxford, pp. 3–30 (1984).

    Google Scholar 

  11. M. F. Ashby, C. Gandhi and D. M. R. Taplin. “Fracture-mechanisms maps and their construction for FCC metals and alloys,” Acta Metall., 27, pp. 699–729 (1979).

    Article  Google Scholar 

  12. C. Gandhi and M. F. Ashby. “Fracture-mechanism maps for materials which cleave: FCC, BCC and HCP metals and ceramics,” Acta Metall., 27, pp. 1565–1602 (1979).

    Article  Google Scholar 

  13. D. Miannay. “Fracture Mechanics,” Springer-Verlag, New York (1998).

    Book  Google Scholar 

  14. R. Raj and M. F. Ashby. “Intergranular fracture at elevated temperature,” Acta Metall., 23, pp. 653–656 (1975).

    Article  Google Scholar 

  15. H. C. Chang and N. J. Grant. “Mechanism of inter granular fracture,” Trans. AIME, 206, pp.544–551 (1956).

    Google Scholar 

  16. B. F. Dyson. “Continuous cavity nucleation and creep fracture,” Scripta Metall., 17, 1, pp. 31–37 (1983).

    Article  Google Scholar 

  17. A. S. Argon. “Mechanisms and mechanics of fracture in creeping alloys,” in “Recent advances in creep and fracture of engineering materials and structures,” Wilshire and Owen, eds., Pineridge Press, Swansea, UK, pp. 1–52 (1982).

    Google Scholar 

  18. A. C. F. Cocks and M. F. Ashby. “On creep fracture by void growth,” Progress in Mat. Sc., 27, pp. 189–244 (1982).

    Article  Google Scholar 

  19. V. Tvergaard. “Influence of grain boundary sliding on material failure in the tertiary creep range,” Int. J. Solids and Structures, 21,3, pp. 279–293 (1985).

    Article  Google Scholar 

  20. D. Hull and D. E. Rimmer. “The growth of grain-boundary voids under stress,” Phil. Mag., 4, pp. 673–689 (1959).

    Article  Google Scholar 

  21. A. Needleman and J. R. Rice. “Plastic creep flow effects in the diffusive cavitation of grain boundaries,” Acta Metall., 28, pp. 1315–1332 (1980).

    Article  Google Scholar 

  22. T. J. Chuang and J. R. Rice. “The shape of intergranular creep cracks growing by surface diffusion,” Acta Metall., 21, pp. 1625–1637 (1973).

    Article  Google Scholar 

  23. T. J. Chuang, K. I. Kagawa, J. R. Rice and L. B. Sills. “Non-equilibrium models for diffusive cavitation of grain interfaces,” Acta Metall., 27, pp. 265–284 (1979).

    Article  Google Scholar 

  24. A. C. F. Cocks and M. F. Ashby. “Intergranular fracture during power-law creep under multiaxial stresses,” Metal Sci., 14, pp. 395–402 (1980).

    Article  Google Scholar 

  25. E. Van der Giessen, M. W. D. Van der Burg, A. Needleman and V. Tvergaard. “Void growth due to creep and grain boundary diffusion at high triaxialities,” J. Mech. Phys. Solids, 43, 1, pp. 123–165 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Budianski, J. W. Hutchinson and S. Slutski. “Void growth and collapse in viscous solids,” in “Mechanics of solids: The Rodney Hill 60th anniversary volume,” Hopkins and Sewell, eds., Pergamon Press, Oxford, pp. 607–652 (1982).

    Google Scholar 

  27. H. M. Shih and H. H. Johnson. “A model calculation of the Nelson curves for hydrogen attack,” Acta Metall., 30, pp. 537–545 (1982).

    Article  Google Scholar 

  28. A. C. F. Cocks. “Inelastic deformation of porous materials,” J. Mech. Phys. Solids, 37,pp. 693–715 (1989).

    Article  MATH  Google Scholar 

  29. P. Sofronis and R. M. McMeeking. “Creep of power-law material containing spherical voids,” Trans. ASME, J. Appl. Mech., pp. S88–S95 (1992).

    Google Scholar 

  30. W. D. Nix and J. C. Gibeling. “Flow and fracture at elevated temperature,” Raj, ed., Amcrican Society for Metals, pp. 1–63 (1983). aupootha

    Google Scholar 

  31. W. Beere and M.V. Speight. “Creep cavitation by vacancy diffusion in plastically deforming solid,” Metall. Sci., 12, 172, pp. 172–176 (1978).

    Google Scholar 

  32. I.W. Chen and A.S. Argon. “Diffusive growth of grain boundaries cavities,” Acta Metall., 29, pp. 1759–1768 (1982).

    Google Scholar 

  33. T.L. Sham and A. Needleman. “Effects of triaxial stressing on creep cavitation of grain boundaries,” Acta Metall., 31, pp. 919–926 (1983).

    Google Scholar 

  34. B.F. Dyson. “Constrained on diffusional cavity growth rates,” Metall. Sci., 10, pp. 349–353 (1976).

    Google Scholar 

  35. H. Riedel. “Fracture at high temperatures,” Springer-Verlag (1987).

    Google Scholar 

  36. J.R. Rice. “Constraints on the diffusive cavitation of isolated grain boundary facets in creep polycrystals,” Acta Metall., 29, pp. 675–681 (1981).

    Google Scholar 

  37. J.W. Hutchinson. “Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation,” Acta Metall., 31, pp. 1079–1088 (1983).

    Google Scholar 

  38. M.Y. He and J.W. Hutchinson. “The penny-shaped crack and the plane strain crack in an infinite body of power-law material,” J. Appl. Mech., 48, pp. 830–840 (1981).

    Google Scholar 

  39. M.Y. He and J.W. Hutchinson. “Penny-shaped crack in a round bar of power-law hardening material,” in “Elastic-plastic fracture, Second Symposium, Vol. 1 Inelastic Crack Analysis, ASTM STP 803,” Shih and Gudas, eds., American Society for Testing and Materials, Philadelphia, pp. I–291–I–305 (1983).

    Google Scholar 

  40. K.H. Hsia, A.S. Argon and D.M. Parks. “Modeling of creep damage evolution around blunt notches and sharp cracks,” Mech. Mater., 11, pp. 19–42 (1991).

    Google Scholar 

  41. V. Tvergaard. “On the creep constrained diffusive cavitation of grain boundary facets,” J. Mech. Phys. Solids, 32, pp.373–393 (1984).

    Google Scholar 

  42. V. Tvergaard. “Analysis of creep crack growth by grain boundary cavitation,” Int. J. Fracture, 31, pp. 183–209 (1986).

    Google Scholar 

  43. V. Tvergaard. “Analysis of creep rupture in a notched tensile bar,” Mechanics of Materials, 4, pp. 181–196 (1985).

    Google Scholar 

  44. A.S. Argon. “Mechanics and mechanisms of fracture in creeping alloys,” in “Recent advances in creep and fracture of engineering materials and structures,” Wilshire and Owen, eds., Pineridge Press, Swansea, UK, pp. 1–52 (1982).

    Google Scholar 

  45. A.S. Argon, C.W. Lau, B. Özmat and D.M. Parks. “Creep crack growth in ductile materials,” in “Fundamentals of deformation and fracture,” Miller et al., eds., Cambridge University Press, pp. 189–243 (1985).

    Google Scholar 

  46. B. Özmat, A.S. Argon and D.M. Parks. “Growth modes of cracks in type 304 stainless steel,” Mech. Mater., 11,pp.1–19 (1991).

    Google Scholar 

  47. F.A. Leckie and D.R. Hayhurst. “Constitutive equations for creep rupture,” Acta Metall., 25, pp. 1059–1070 (1977).

    Google Scholar 

  48. J.B. Conway. “Stress rupture parameters: Origin, calculation and use,” Gordon and Breach, New York (1969).

    Google Scholar 

  49. F.C. Monkman and N.J. Grant. “An empirical relationship between rupture life and minimum creep rate in creep rupture tests,” Proc. Am. Soc. Testing Materials, 56, pp. 593–620 (1956).

    Google Scholar 

  50. J.E. Dom. “Mechanical behavior of materials at elevated temperatures,” McGrawHill Inc., New York (1961).

    Google Scholar 

  51. F.R. Larson and J. Miller. “A time-temperature relationship for rupture and creep stress,” Trans. ASME, 74, p. 765–775 (1952).

    Google Scholar 

  52. F.A. Leckie and D.R. Hayhurst. “Creep rupture of structures,” Proc. Roy. Soc. Lond. A, 340, pp. 323–347 (1974).

    Google Scholar 

  53. D.R. Hayhurst and F.A. Leckie. in “Mechanical Behavior of materials, Proceedings of ICM 4,” Vol. 2, Carlsson and Ohlson, eds., Pergamon Press, Oxford, pp. 1195–1212 (1984).

    Google Scholar 

  54. W.D. Nix, J.c. Eartham, G.Eggeler and B. Ilschner. “The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses,” Acta Metall., 37,4, pp. 1066–1077 (1989).

    Google Scholar 

  55. W.D. Nix. “Grain boundary sliding and creep fracture of metals under multiaxial stresses,” in “Advances in Fracture Research, ICF 7, Vol. 2,” Salama et al., eds, Pergamon Press, pp. 1481–1493 (1989).

    Google Scholar 

  56. B. AI-Abed, R. Timmins, G.A. Webster and M.S. Loveday. “Validation of a code of practiced for notched bar creep rupture testing: procedures and interpretation of data for design,” Materials at High Temperatures, 16,3, pp. 143–158 (1999).

    Google Scholar 

  57. Piques and A. Pineau. “Global and local approaches to creep crack initiation and growth applied to an austenitic stainless steel and an aluminium alloy,” in “Advances in fracture research, Proceedings of ICF 7, Vol. 2,” Salama et al., eds, Pergamon Press, pp.1707–1714 (1989).

    Google Scholar 

  58. Yoshida, C. LevailIant, R. Piques and A. Pineau. “Quantitative study of intergranulardamage in an austenitic stainless steel on smooth and notched bars,” in “High temperature fracture mechanisms and mechanies, ESF 6,” Bensussan, ed., Mechanical Engineering Publications, London, pp. 3–21 (1990).

    Google Scholar 

  59. L. Robinson. “Effect of temperature variation on the long-time rupture strength of steels,” Trans. Am. Inst. Min. Engrs., 7A, pp 777–781 (1952).

    Google Scholar 

  60. K.G. Odqvist. “Mathematical theory of creep and creep rupture, 2nd edn.,” Clarendon Press, Oxford, Ch.12 (1974).

    Google Scholar 

  61. Yu N. Rabotnov. “Creep problems in structural members,” Leckie, ed., North Holland, Amsterdam (1969).

    Google Scholar 

  62. M. Kachanov. “Introduction to continuum damage mechanics,” Kluwer Academic Publishers, Dordrecht, Netherlands (1986).

    Google Scholar 

  63. F. Dyson and F.A. Leckie. “Damage equations for physically-based creep life,”in “Advances in Fracture Research-ICF 7,” Vol.3, Salama et al, eds., Pergamon Press, pp. 2169–2176 (1989).

    Google Scholar 

  64. D.R. Hayhurst, P.R. Dimmer and C.J. Morrison. “Development of continuum damage in the creep rupture of notched bars,” Phil. Trans. R. Soc. (London), A 311, pp. 103–129 (1984).

    Google Scholar 

  65. Hayhurst, P. R. Brown and C. J. Morrison. “The role of continuum damage in creep crack growth,” Phil. Trans. R. Soc. (London), A 311, pp. 131–158 (1984).

    Article  Google Scholar 

  66. J. Le Ber, V. Cotoni, J. Nicolas and C. Sainte-Catherine. “IDENT lD-A novel software tool for an easy identification of material constitutive parameters,” Nuclear Engng. and Design, 186, pp. 343–352 (1998).

    Article  Google Scholar 

  67. G. J. Rodin and D. M. Parks. “On consistency relations in nonlinear fracture mechanics,” J. Appl. Mech., 108, pp. 834–838 (1986).

    Article  Google Scholar 

  68. G. J. Rodin and D. M. Parks. “Constitutive models of a power-law matrix containing aligned penny-shaped cracks,” Mech. Mater., 5, pp. 221–228 (1986).

    Article  Google Scholar 

  69. G. J. Rodin and D. M. Parks. “A self consistent analysis of a creeping matrix with aligned cracks,” J. Mech. Phys. Solids, 36, 2, pp. 237–249 (1988).

    Article  MATH  Google Scholar 

  70. D. M. Parks. “Mechanics and mechanisms of creep deformation and damage,” Nucl. Engng. and Design, 105, pp. 11–18 (1987).

    Article  Google Scholar 

  71. M. Sester, R. Mohrmann and H. Riedel. “A micromechanical model for creep damage and its application to crack growth in a 12% Cr steel,” in “Elevated temperature effects on fatigue and fracture, ASTM, STP 1297,” Piascik, Gangloff, and Saxena, eds., American Society for Testing and Materials, pp. 37–53 (1997).

    Google Scholar 

  72. V. Tvergaard. “On the creep constraint diffusive cavitation of grain boundary facets,” J. Mech. Phys. Solids, 33, pp. 447–469 (1985).

    Article  MATH  Google Scholar 

  73. M. Capano, A. S. Argon and I. W. Chen. “Intergranular cavitation during creep in Astroloy,” Acta Metall., 37, pp. 3195–(1989).

    Google Scholar 

  74. A.S. Argon, K. J. Hsia and D. M. Parks. “Growth of cracks by intergranular cavitation in creep,” in “Topics in Fracture and Fatigue,” Argon, ed., Springer-Verlag, NY, pp. 234–270 (1992).

    Chapter  Google Scholar 

  75. A. Chakraborty and J. C. Earthman. “Numerical models of creep cavitation in single phase, dual phase and fully lamellar titanium aluminide,” Acta Mater., 45, 11, pp. 4615–4626 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miannay, D.P. (2001). Creep Fracture: Creep Laws and Elementary Microscopic-Fracture Models. In: Time-Dependent Fracture Mechanics. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0155-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0155-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6537-5

  • Online ISBN: 978-1-4613-0155-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics