Skip to main content

Dynamic Fracture: Elementary Dynamics and Microscopic Fracture

  • Chapter
Time-Dependent Fracture Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

  • 458 Accesses

Abstract

The practical phenomena treated are the start of the extension of a crack, or crack initiation, its propagation with its characteristics, which are the path, straight ahead or along-branching or kinking, the growth rate, and its arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kolsky. “Stress waves in solids,” Dover, New York, (1963).

    Google Scholar 

  2. G. I. Taylor. “The testing of materials at high rates of loading,” Proc. Inst. Civil Engrs., London, 26, 8, pp. 486–519 (1946).

    Google Scholar 

  3. T. Mukai, K. Ishikawa and K. Higashi. “Strength and ductility under dynamic loading in fine-grained IN905XL aluminum alloy,” Metall. and Mater. Trans.A, 26A, pp. 2521–2526 (1995).

    Google Scholar 

  4. C. W. Marschall, M. P. Landow, G. M. Wilkowski and A. R. Rosenfield. “Comparison of static and dynamic strength and J-R curves of various piping materials from the IPIRG-I program,” Int. J. Press. Vess. and Piping, 62, pp. 49–58 (1995).

    Article  Google Scholar 

  5. S. Nemat-Nasser, Y. F. Li and J. B. Isaacs. “Experimental/computational evaluation of flow stress at high strain rates with application to adiabatic shear banding,” MechanicsofMater., 17,pp.111–134(1994).

    Google Scholar 

  6. R. J. Clifton. “High strain rate behavior of metals,” Appl. Mech. Rev., 43, 5, 2, pp. S9–S22 (1990).

    Article  Google Scholar 

  7. N. J. Hoff. «Approximate analysis of structures in the presence of moderately large creep deforrnations,” Quarter. Appl. Math., 12, pp. 49–55 (1954).

    MathSciNet  MATH  Google Scholar 

  8. A. A. Illyushin. “Plasticité-Déforrnations élasto-plastiques”, Eyrolles, Paris (1956).

    Google Scholar 

  9. J. Duffy, J. D. Campbell and R. H. Hawley. “On the use of a torsion al split hopkinson bar to study rate effects in 11000-0 aluminum,” Trans ASME, J. Appl. Mech., 37, pp. 83–91 (1971).

    Article  Google Scholar 

  10. P. Perzyna. “The constitutive equations for rate sensitive plastic materials,” Quater. Appl. Math., 20, pp.321–332 (1963).

    MathSciNet  MATH  Google Scholar 

  11. P. Perzyna. in “Mechanical properties at high rate of strain, Conf. Series 21,” Institute ofPhysics, Bristol, UK, pp. 138–153 (1974).

    Google Scholar 

  12. L. E. Malvem. “Experimental Studies of strain rate effects on plastic wave propagation in annealed aluminum,” in “Proceedings, ASME Colloquium on Behavior of Materials under Dynamic Loading,” Huffington Jr., ed., American Society of Mechanical Engineers, NY, pp.81–92 (1965).

    Google Scholar 

  13. L. E. Malvem. “Plastic wave propagation in a bar of material exhibiting astrain rate effect,” Quarter. Appl. Math., 8, pp. 405–411 (1951).

    Google Scholar 

  14. S. R. Bodner and P. S. Symonds. “Plastic deformations in impact and impulsive loading of beams,” in “Plasticity, proceedings of the second symposium on naval structural mechanics,” Lee and Symonds, eds., Pergamon Press, pp. 488–500 (1960).

    Google Scholar 

  15. K. C. Koppenhoefer and R. H. Dodds Jr. “Constraint effects on fracture toughness of impact-loaded, precracked Charpy specimen,” Nucl Eng and Design, 162, pp. 145–158 (1996).

    Article  Google Scholar 

  16. K. C. Koppenhoefer and R. H. Dodds Ir. “Loading rate effects on cleavage fracture of pre-cracked Charpy specimens, 3-D studies,” Eng. Fracture Mech., 58, 3, pp. 249–270 (1997).

    Article  Google Scholar 

  17. A. G. Varias and C. F. Shih. “Dynamic steady crack growth in elastic-plastic solidspropagation of strong discontinuities,” J. Mech. Phys. Solids, 42, pp. 1817–1848 (1995).

    Article  Google Scholar 

  18. Xia and L. Cheng. “Quasi-statically steady crack growth in rate dependent so lids-One-parameter field encompassing different constraints,” Int. J. Fracture, 82, pp. 97–114 (1996).

    Google Scholar 

  19. S. R. Bodner “Review of a unified elastic-viscoplastic theory,” in “Unified equations for creep and plasticity,” Miller, ed., Elsevier, London, pp. 273–301 (1987).

    Chapter  Google Scholar 

  20. S. R. Bodner and M. B. Rubin. “Modelling of hardening at very high strain rates,” J. Appl. Phys., 76, pp. 2742–2747 (1994).

    Article  Google Scholar 

  21. J. R. Klepaczko. “Constitutive modeling in dynamic plasticity based on physical state variables-A review,” Journal de Physique, Colloque C3, pp. C3–553–C3–560 (1988).

    Google Scholar 

  22. F. Buy, J. Fam~, J. R. Klepaczko and G. Talabart. “Evaluation of the parameters of a constitutive model for b.c.c. metals based on thermal activation, Journal de Physique, Colloque C3, pp. C3–631–C3–636 (1997).

    Google Scholar 

  23. G. I. Taylor and H. Quinney. “The latent energy remaining in a metal after cold working,” Proc. Roy. Soc. London, A143, pp. 307–326 (1934).

    Google Scholar 

  24. L. B. Freund and J. W. Hutchinson. “High strain-rate crack growth in ratedependent plastic materials,” J. Mech. Phys. Solids, 33, 2, pp.169–191 (1985).

    Article  Google Scholar 

  25. J. Litonski. “Plastic flow of a tube under adiabatic torsion,” Bull. Acad. Polonaise des Sciences, Série des Sciences Techniques, 25, pp.7–14 (1977).

    Google Scholar 

  26. A. Molinari and R. J. Clifton. “Analytical characterisation of shear localization in thermoviscoplastic materials,” J. Appl. Mech., 54, pp.806–812 (1987).

    Article  MATH  Google Scholar 

  27. A. Molinari. “Shear band analysis,” Solid State Phenomena, 3/4, pp. 447–468 (1988).

    Article  Google Scholar 

  28. P. S. Follansbee and U. F. Kocks. “A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable,” Acta Met., 36, 1, pp. 81–93 (1988).

    Article  Google Scholar 

  29. J. N. Johnson and D. L. Tonks. “Dynamic plasticity in transition from thermal activation to viscous drag,” in “Shock compression of condensed matter,” Elsevier Science, New York, pp. 371–378 (1991).

    Google Scholar 

  30. G. R. Johnson and W. H. Cook. “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Engng. Fracture Mech., 21,1, pp. 31–48 (1985).

    Article  Google Scholar 

  31. R. W. Armstrong and F. J. Zerilli. Journal de Physique, Colloque C3, Dymat 88, 49, C3–529–C3–534 (1988).

    Google Scholar 

  32. F. J. Zerilli and R. W. Armstrong. “Dislocation-mechanics based constitutive relations for material dynamics calculations,” J. Appl.. Phys., 61, 5, pp. 1816–1825 (1987).

    Article  Google Scholar 

  33. M. Zhou, G. Ravichandran and A. J. Rosakis. “Dynamically propagating shear bands in impact loaded prenotched plates-II. Numerical simulations,” J. Mech. Phys. Solids, 44, 6, pp. 1007–1032 (1996).

    Article  Google Scholar 

  34. v. Prakash and R. J. Clifton. “Experimental and analytical investigation of dynamic fracture under conditions of plane strain,” in “Proceedings of the 22ND National Symposium Fracture Mechanics, ASTM STP 1131,” American Society for Testing and Materials, West Conshohocken, PA,USA, pp. 412–444 (1992).

    Google Scholar 

  35. A. Needleman and V. Tvergaard “Analysis of a brittle-ductile transition under dynamic shear loading,” lnt. J. Solids and Struct., 32, 17/18, pp. 2571–2590 (1995).

    Article  MATH  Google Scholar 

  36. Y. Lee and V. Prakash. “Dynamic fracture toughness versus crack tip speed relationship at lower than room temperature for high strength 4340 V AR structural steel,” J. Mech. Phys. Solids, 46, 10, pp. 1943–1967 (1998).

    Article  MATH  Google Scholar 

  37. D. R. Curran, L. Seaman. and D. A. Shockey. “Dynamic failure of solids,” Physics reports. (review section of physics letters), 147”, North Holland, Amsterdam, pp. 253–388 (1987).

    Google Scholar 

  38. J. W. Johnson. “Dynamic fracture and spallation in ductile solids,” J. Appl. Phys., 52, pp.812–2825 (1981).

    Google Scholar 

  39. L. B. Freund. “Dynamic fracture Mechanics,” Cambridge University Press, (1990).

    Google Scholar 

  40. E. B. Glennie. “The dynamic growth of a void in a plastic material and an application to fracture,” J. Mech. Phys. Solids, 20, pp. 415–429 (1972).

    Article  MATH  Google Scholar 

  41. H. KlOcker and F. Montheillet. “Influence of flow rule and inertia on void growthin a rate sensitive material,” in Journal de Physique IV, “Dymat 91. 3rd Internationalconference on mechanical and physical behavior of materials under dynamic loading,” Vol.1, pp. 733–738 (1991).

    Google Scholar 

  42. C. C. Chu and A. Needleman. “Void nucleation effects in bi-axially stretched sheets,” J. Engng. Mater. Technol., 102, pp. 249–256 (1980).

    Article  Google Scholar 

  43. B. Moran, R. J. Asaro and C. F. Shih. “Effects of material rate sensitivity and void nucleation on fracture initiation in a circumferentially cracked bar,” Met. Trans. A, 22A, pp.161–170 (1991).

    Google Scholar 

  44. A. Needleman and V. Tvergaard. “Mesh effects in the analysis of dynamic ductile crack growth,”, Engng. Fracture Mech., 47, 1, pp. 75–91 (1994).

    Article  Google Scholar 

  45. W. Tong and G. Ravichandran. “Inertial effects on void growth in porous viscoplastic materials,” J. Appl. Mech., 62, pp. 633–639 (1995).

    Article  Google Scholar 

  46. S. C. Liao and J. Duffy. “Adiabatic shear bands in a Ti-6AI-4V titanium alloy,” J. Mech. Phys. Solids, 46, 11, pp. 2201–2231 (1998).

    Article  Google Scholar 

  47. A. Meyers, Y. J. Chen, F. D. S. Marquis and D. S. Kim. “High-strain, high-strain rate behavior of tantalum,” Metall. and Mater. Trans. A, 26A, pp. 2493–2501 (1995).

    Article  Google Scholar 

  48. D. E. Grady. «Properties of an adiabatic shear-band process zone,” J. Mech. Phys. Solids, 40, pp. 1197–1215 (1992).

    Article  Google Scholar 

  49. A. Molinari and R. J. Clifton. “Analytical characterization of shear localization in thermoviscoplastic materials,” Trans. ASME, J. Appl. Mech., pp. 806–812 (1987).

    Google Scholar 

  50. A. Molinari. “Collective behavior and spacing of adiabatic shear band,” J. Mech. Phys. Solids, 45, 9, pp. 1551–1575 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Estrin, A. Molinari and S. Mercier. “The role of rate effects and of thermomechanical coupling in shear localization,” Trans. ASME, J. Engng. Mater. Technol., 119, pp. 322–331 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miannay, D.P. (2001). Dynamic Fracture: Elementary Dynamics and Microscopic Fracture. In: Time-Dependent Fracture Mechanics. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0155-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0155-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6537-5

  • Online ISBN: 978-1-4613-0155-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics