Skip to main content

Structural-Integrity Assessment: The Relevant Fracture-Toughness Evaluation

  • Chapter
Time-Dependent Fracture Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

  • 489 Accesses

Abstract

In this chapter, we describe how fracture strength of materials was evaluated before the Linear Elastic Fracture Mechanics theory appeared fifty years ago, and how this property is now currently evaluated. The fracture behaviors at issue are the three basic ones, i.e. brittle fracture, ductile tearing with or without instability, and failure by brittle fracture after some amount of ductile tearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM designation E23–96. “Standard test methods for notch bar impact testing of metallic materials,” in 1998Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA, USA (1998).

    Google Scholar 

  2. Worlwide: ISO Standard 148–1. “Metallic materials-Charpy pendulum impact testPart I: Test method. Part 2: Verification of the testing machine.” In Europe: European Standard EN 10045–1 October 1990 Metallic materials. Charpy impact test. Part I: test method. (NF A 03–011) (October 1990). European Standard NF EN I 0045-Metallic materials. Charpy impact test. Part 2: verification of the testing machine (pendulum impact) (NF A 03–012) (December 1992). In Japan: Japanese Industrial standards JIS B 1740 and JIS B 1742.

    Google Scholar 

  3. W. Oldfiefd. “Curve fitting impact test data:a statistical procedure,” ASTM Standardisation News, 3, 11, pp. 24–29 (1975).

    Google Scholar 

  4. P. L. Windle, M. Crowder and R. Moskovic. “A statistical model for the analysis and prediction of the effect ofneutron irradiation on Charpy impact energy curves,” Nuclear Engng. and Design, 165, pp. 43-56 (1996).

    Google Scholar 

  5. ASTM designation E 185-82. “Standard test methods for conducting surveillance tests for light water cooled nuclear power reactor vessels, E 706 (IF),” in dy1998 Annual book of ASTM standards, Vol.03.01, American Society for Testing and Materials, West Conshohocken, PA, USA (1998).

    Google Scholar 

  6. W. L. Server. “Impact three point bend testing for notched and precracked specimens,” J. Test. Eval., 6, pp. 29–34 (1978).

    Article  Google Scholar 

  7. ASTM designation E636–83. “Standard practice for conducting supplemental surveillance tests for nuclear power reactor vessels, E 706 (IH),” in Annual Book of ASTM Standards, Vol.03.01, American Society for Testing and Materials, West Conshohocken, PA, USA (1991).

    Google Scholar 

  8. W. L. Server. “General yielding of Charpy-V notch and precracked Charpy specimens,” J. Engng. Mat. Technol., Trans ASME, 100, pp. 183–188 (1978).

    Google Scholar 

  9. W. Böhme. “Experience with instrumented Charpy tests obtained by a DVM roundrobin and further developments,” in Evaluating Material Properties by Dynamic Testing. ESIS 20, Van Walle, ed., Mechanical Engineering Publications, London, pp. 1–23 (1996).

    Google Scholar 

  10. ASTM designation E 604–83 (Reapproved 1994). “Standard test method for dynamic tear testing of metallic materials,” in 1998 Annual Book of ASTM Standards, Vol. 03.01, American Society far Testing and Materials, West Conshohocken, PA, US (1998).

    Google Scholar 

  11. ASTM designation E 436–91 (Reapproved 1997). “Standard test method far dropweight tear tests offerritic stee1s,” in 1998 Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA, USA (1998).

    Google Scholar 

  12. W. S. Pellini. “Principles offracture safe design-Part I,” Supplement to the welding journal, March 1971, pp. 91s–109s, (1971); “Principles of fracture safe design-Part II,” Supplement to The Welding Journal, April 1971, pp. 147s–1628 (1971).

    Google Scholar 

  13. W. S. Pellini. “Fracture Analysis Diagram procedures for the fracture-safe engineering design of stee1 structures,” Welding Research Council Bulletin, 88, May, pp. 1–28 (1963).

    Google Scholar 

  14. C. S. Wiesner. “Investigations into experimental parameters of the Pellini DropWeight test,” in PVP–373, Fatigue, Fracture, and Residual Stresses, ASME 1998, pp. 115–125 (1998).

    Google Scholar 

  15. M. Higuchi, Y. Tanaka, T. Yamauchi and K. Iida. “Effects of the drop weight test procedure on TNDT,” in PVP–346, Fatigue and Fracture–1997, Volume 2, ASME 1997, pp. 139–146 (1997).

    Google Scholar 

  16. T.S. Robertson. “Propagation of brittle fracture in steel,” J. Iron Steel Inst. (London), 175, 12, pp. 361–374 (1953).

    Google Scholar 

  17. T. S. Robertson. “Report on brittle fracture studies,” The Welding Journal, Resxearch Supplement, 34, pp. 62s-(1956).

    Google Scholar 

  18. F. J. Feeley Jr, M. S. Northup, S. R. Kleppe and M. Gensamer. “Studies on the brittle failure of tankage steel plates,” The Welding Journal, Research Supplement, 34, pp. 596s–607s (1995).

    Google Scholar 

  19. A. Cheviet, M. Grumbach, M. Prudhomme et G. Sanz.,«Comparaison des resultats de divers essais de rupture fragile,» Revue de Metallurgie, 3, pp. 217–236 (1970).

    Google Scholar 

  20. B. Marandet and G. Sanz. “Evaluation of the toughness of thick medium-strength steels by using linear-elastic fracture mechanics and correlations between KIC and Charpy V-notch,” in Flaw Growth and Fracture, ASTM STP 631, American Society for Testing and Materials, Philadelphia, pp.72–95 (1977).

    Chapter  Google Scholar 

  21. L. Porse. “Reactor-vessel design considering radiation effects,” Transactions of the ASME, Journal of Basic Engineering, Paper No. 63–W A–1 00, pp. 1–6 (1983).

    Google Scholar 

  22. T. Planman, K. Wallin and R. Rintamaa. “Evaluating crack arrest fracture toughness from Charpy impact testing” in Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology, vol.4, Division G, Livolant, ed., CEA, EDF, FRAMATOME, pp. 415–422 (1997).

    Google Scholar 

  23. B. Marandet, G. Phelippeau and G. Sanz. “Influence of loading rate on the fracture toughness of some structural steels in the transition regime,” in Fracture Mechanics: Fifteenth Symposium, ASTM STP 833, Sanford, Ed., American Society for Testing and Materials, Philadelphia, pp. 622–647 (1984).

    Chapter  Google Scholar 

  24. G. Sanz. « Essai de mise au point d’une methode quantitative de choix des aciers vis-a-vis du risque de rupture fragile, » Revue de Metallurgie-CIT, 77, pp. 621–642 (1980).

    Google Scholar 

  25. R. H. Sailors and H. T. Corten. “Relationship between material fracture toughness using fracture mechanics and transition temperature tests,” in Fracture Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia, pp. 164–191 (1972).

    Chapter  Google Scholar 

  26. K. Wallin. “A simple theoretical Charpy V-KIC correlation for irradiation embrit! lement,” in ASME Pressure Vessels and Piping Conference: Innovative Approaches to Irradiation Damage and Fracture Analysis, PVP-Vol 170, American Society of Mechanical Engineers, NY, pp. 93–100 (1989).

    Google Scholar 

  27. S. T. Rolfe and S. R. Novak. “Slow-bend KIC testing of medium-strength hightoughness steels,” in “Review of developments in plane strain fracture toughness testing,” in ASTM STP 463, American Society for Testing and Materials, Philadelphia, pp. 124–159 (1970).

    Google Scholar 

  28. J. M. Barsom and S. T. Rolfe. “Correlation between Klc and Charpy V-notch test results,” in “Impact testing of metals,” in “ASTM STP 466,” American Society for Testing and Materials, Philadelphia., pp. 281–302 (1970).

    Chapter  Google Scholar 

  29. J. M. Barsom. “Swedlow Memorial Lecture: Structural problems in search of fracture mechanics solutions,” in Fracture Mechanics: Twenty-Third Symposium, ASTM STP 1189, Ravinder Chona, ed., pp. 5–34 (1993).

    Google Scholar 

  30. V. S. Girenko and V. P. Lyndin. “Relationship between the impact strength and fracture mechanics criteria and KIC of structural steels and welded joints in them,” Automatic Welding, Sept, pp. 13–19 (1985).

    Google Scholar 

  31. T. U. Mardson, ed. “Flaw evaluation procedures: Background and application of ASME Section XI, Appendix A”, EPRI NP-719-SR, Electric Power Research Institute, Palo Alto, CA, USA (1978).

    Google Scholar 

  32. ASTM Standard E 1921–00. “Test method for the determination of reference temperature, Ta, for ferritic steels in the transition region,” in 2000 Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA, USA (2000).

    Google Scholar 

  33. K. Wallin. “Validity of small fracture toughness estimates neglecting constraint corrections,” in Constraint Effects in Fracture Theory and Applications, ASTM STP 1244, M. Kirk and A. Bakker, eds., American Society for testing and Materials, Philadelphia, pp. 519–537 (1994).

    Google Scholar 

  34. M. Kirk, R. Lott, C. Kim and W. Server. “Empirical validation of the master curve for irradiated and unirradiated reactor pressure vessel steels,” in The 1998 ASME/JSME Pressure Vessel and Piping Symposium, Vol 380, Fitness for Service Evaluations in Petroleum and Fossil Power Plants, pp. 251–264 (1998).

    Google Scholar 

  35. M. Kirk, R. Lott, W. Server, B. Hardies and S. Rosinski. “Bias and precision of Ta values determined using ASTM Standard E 1921-97 for nuclear reactor pressure vessel steels,” in 19th International Symposium on the Effects of Radiation on Materials, ASTM STP 1366, Hamilton, Rosinski, Grossbeck and Kumar, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 143–151 (2000).

    Google Scholar 

  36. K. Wallin et al. “The ductile to brittle transition temperature toughness in the Eurocode” to be published.

    Google Scholar 

  37. R. Moskovic. “Statistical analysis of censored fracture toughness data in the ductile to brittIe transition temperature region,” Engng. Fracture Mech., 44, 1, pp. 21–41 (1993).

    Article  Google Scholar 

  38. D. Sienstra, T. L. Anderson and L. J. Ringer. “Statistical references on cleavage fracture toughness data,” 1. Engng. Mat. Technol., 112, pp. 31–37 (1990).

    Article  Google Scholar 

  39. A. Brozova and M. Ruscak. “The statistical treatment of small specimen fracture toughness data in the transition region,” Fatigue Fract. Engng. Mater. Struct., volume 16, 11, pp. 1203–1212 (1993).

    Google Scholar 

  40. T. L. Anderson, N. M. R. Vanaparthy and R. H. Dodds, Jr. “Prediction of specimen size dependence on fracture toughness for cleavage and ductile tearing,” in Constraint Effects in Fracture, ASTM STP 1171, Hackett, Schwalbe and Dodds, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 473–491 (1993).

    Chapter  Google Scholar 

  41. W. E. Pennel and W. R. Corwin. “Reactor pressure vessel structural integrity research,” Nuclear Engng. and Design, 157, pp. 159–175 (1995).

    Google Scholar 

  42. B. Marandet and G. Sanz. “Experimental verification of the JIC and equivalent energy methods for the evaluation of fracture toughness of steels,” in “ASTM STP 631,” American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 462–476 (1977).

    Google Scholar 

  43. A. R. Rosenfield and D. K. Shetty. “Lower-bound fracture toughness of a reactor pressure-vessel steel,” Engng. Fracture Mech., 14,4, pp. 833-842 (1981).

    Google Scholar 

  44. A. R. Rosenfield and D. K. Shetty. “Cleavage fracture of steel in the upper ductilebrittle transition region,” Engng. Fracture Mech., 17,5, pp. 461–470 (1983).

    Article  Google Scholar 

  45. A. R. Rosenfield and D. K. Shetty. “Cleavage fracture of steel in the ductile-britt1e transition region,” in ASTM STP 856, American Society for Testing and Materials, Philadelphia, pp. 196–209 (dy1985).

    Google Scholar 

  46. B. Houssin, R. Langer, D. Lidbury, C. Rieg and P. Soulat. “Re-evaluation of KIC reference curve of press ure vessel materials for fracture mechanics analysis,” Report CR-NA-EUR 1757 EN, European Communities, Office for Official Publications, Luxembourg (1998).

    Google Scholar 

  47. W. L. Server and S. T. Rosinski. “Technical basis for application of the master curve approach to reactor press ure vessel integrity assessment,” in “Effects of radiation on materials, 19th International Symposium, ASTM STP 1396,” Hamilton, Kumar, Rosinski and Grossbeck, eds., American Society for Testing and Materials, American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 127–142 (1999).

    Google Scholar 

  48. ASME Code Case N-629. “Use of fracure toughness test data to establish reference temperature for pressure retaining materials for section XI,” American Society of Mechanical Engineers, New York, (1999).

    Google Scholar 

  49. K. K. Yoon, W.A. Van Der Sluys and K. Hour. “Effect of loading rate on fracture toughness of pressure vessel steels,” in “Fracture, fatigue and weId residual stress. PVP-Vol. 393,” Pan, ed., American Society of Mechanical Engineers, New York, pp. 63–69 (1999).

    Google Scholar 

  50. K. Wallin. “Application of the master curve method to crack initiation and crack arrest,” in “Fracture, Fatigue and weId residual stress. PVP-Vol. 393,” Pan, Ed., The American Society of Mechanical Engineers, New York, pp. 3–9 (1999).

    Google Scholar 

  51. D. J. Nauss, B. R. Bass, R. K. J. Keeney-Walker, R. J. Fields, R. deWit and S. R. Low III. “HSST wide-plate test results and analysis,” Nuclear Engng. and Design, 118, pp. 283–295 (1990).

    Google Scholar 

  52. A. Pellissier-Tanon, P. Sollogoub and B. Houssin. “Crack initiation and arrest in an SA 508 Class-3 cylinder under liquid nitrogen thermal-shock,” Paper G1F1/8, Trans. 7th Int. Conf. on Structural Mechanics in Reactor Technology, NorthHolland Publishing, vol. G/H, pp. 137–142 (1983).

    Google Scholar 

  53. R. D. Cheverton, S. K. Iskander and D. G. Ball. “Review of pressurised-waterreactor-related thermal shock studies,” in “Fracture Mechanics: nineteenth symposium,” ASTM STP 969, Cruse, ed., American Society tor Testing and Materials, Philadelphia, pp. 752–766 (1988).

    Google Scholar 

  54. R. H. Bryan, J. G. Merkle, R. K. Nanstad and G. C. Robinson. “Pressurized thermal shock experiments with thick vessels,” in “Fracture Mechanics: nineteenth symposium,” ASTM STP 969, Cruse, ed., American Society for Testing and Materials, Philadelphia, pp. 767–783 (1988).

    Google Scholar 

  55. R. D. Cheverton, J. W. Bryson, D. J. Alexander and T. Slot. “Thermal-shock experiments with flawed clad cylinders,” Nuclear Engng. and Design, 124, pp. 109–119 (1990).

    Google Scholar 

  56. W. N. Sharpe, Jr., D. Danley and D. A. LaVan. “Microspecimen tensile tests of A533-B steel,” in “Small specimen test techniques, ASTM STP 1329,” Corwin, Rosinski and Van Walle, eds, American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 497–512 (1998).

    Google Scholar 

  57. F. M. Haggag, R. K. Nanstad, J. T. Hutton, D. L. Thomas and R. L. Swain. “Use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials,” in “Application of automation technology to fatigue and fracture testing, ASTM STP 1902,” Braun et al., eds., American Society for Testing and Materials, Philadelphia, pp. 188–208 (1990).

    Google Scholar 

  58. ASTM designation E 1253-88. “Standard guide for reconstitution of irradiated Charpy specimens,” in “1998 Annual book of ASTM standards, vol. 03.01,” American Society for Testing and Materials, West Conshohocken, PA, USA (1998).

    Google Scholar 

  59. K. Onizawa, K. Fukaya, Y. Nishiyama, M. Suzuki, S. Kaihara and T. Nakamura. “Development of reconstitution technique of Charpy impact specimens by surface activated joining for reactor pressure vessel surveillance,” Int. J. Pres. Ves. & Piping,70, pp. 201–207 (1997).

    Google Scholar 

  60. “Proposed ASTM Standard method for impact testing of miniaturized Charpy Vnotch,” Draft 7, ASTM Sub-Committee E28.07.08, American Society for Testing and Materials, West Conshohocken, PA, USA (December 1998).

    Google Scholar 

  61. ESIS TC5. “Proposed standard method for instrumented impact testing of subsize Charpy V-notch specimens of steels,” Draft 8, prepared by the working party “European Standards on Instrumented Charpy V-Notch Testing of Subsize Specimens,” of the European Structural Integrity Society (ESIS) TC57vvv (1999).

    Google Scholar 

  62. DIN 50 115. “Kerbschlag biegeversuch, besondere Probenformen und Auswerteverfahren, ” April 1999.

    Google Scholar 

  63. M. P. Manahan, Sr. “In situ heating and cooling of Charpy test specimens,” in “Pendulum Impact Testing: a century of progress, ASTM STP 1380,” Siewert and Manahan, Sr., Eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. (2001).

    Google Scholar 

  64. E. Lucon, R. Chaouadi, A. Fabry, J. L. Puzzolante and E. van Walle. “Characterizingmaterial properties by the use of full-size and subsize Charpy tests: an overview of different correlation procedures”, in “Pendulum impact testing: a century of progress, ASTM, STP 1380,” Siewert and Manahan, Sr., eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. (to be published, 2001).

    Google Scholar 

  65. E. Klausnitzer. “Micro-specimens for mechanical testing,” Materialprüfung, 33, pp. 132–134 (1991).

    Google Scholar 

  66. A. Kryukov, P. Platonov, Ya. Shtrombakh, V. Nikolaev, E. Klausnitzer, C. Leitz and C. Y. Rieg. “Investigation of sampies taken from Kozloduy unit 2 reactor pressure vessel,” Nuclear Engng. and Design, 160, pp. 59–76 (1996).

    Google Scholar 

  67. Yu. N. Korolev, A. M. Kryukov, Yu. A. Nikolaev, P. A. Platonov, Ya. J. Shtrrombakh, R. Langer, C. Leitz and C. Y. Rieg. “Assessment of irradiation response of WWER-440 welds using sampIes taken from Novovoronezh unit 3 and 4 reactor pressure vessels,” Nuclear Engng. and Design, 185, pp. 309–317 (1998).

    Google Scholar 

  68. W. Böhme and W. Schmitt. “Comparison of results of instrurnented Charpy and mini-Charpy tests with different RPV-Steels,” in “Small specimen test techniques,” ASTM STP 1329, Corwin, Rosinski and Van Walle, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 39–47 (1998).

    Google Scholar 

  69. M. Valo, T. Planman and K. Wallin. “The applicability of small and ultra-small fracture toughness specimens for material characterization,” in “Small specimen test techniques,” ASTM STP 1329, Corwin, Rosinski and Van Walle Eds., American Society for Testing and Materials, West Conshohocken, PA, US, pp. 196–213 (1998).

    Google Scholar 

  70. T. Planman, M. Nevalainen, M. Valo and K. Wallin. “Applicability of sub-Charpysize bend specimens for master curve characterization of the fracture toughness in the transition region,” in “Fatigue and fracture mechanics: 29th volume, ASTM STP 1321,” Panontin and Sheppard, eds., American Society of Testing and Materials, West Conshohocken, PA, USA, pp. 40–54 (1999).

    Chapter  Google Scholar 

  71. J. Foulds, M. Wu, S. Srivastav and C. W. Jewett. “Fracture and tensile properties of ASTM cross-comparison exercise on A 533B steel by small punch testing,” in “Small specimen test techniques,” ASTM STP 1329, Corwin, Rosinski and Van Walle, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 557–574 (1998).

    Google Scholar 

  72. E. Fleury and J. S. Ha. “Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength,” Int. J. Pressure Vessels and piping, 75, pp. 707–713 (1998).

    Google Scholar 

  73. J. S. Ha and E. Fleury. “Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength,” Int. J. Pressure Vessels and piping, 75, pp. 699–706 (1998).

    Google Scholar 

  74. J. R. Foulds and R. Viswanathan. “Nondisruptive material sampling and mechanical testing,” J. of Nondestructive Evaluation, 15, 3/4, pp. 151–162 (1996).

    Google Scholar 

  75. A. H. Sherry, B. K. Neale, G. Gage and D. J. Sanderson. “The use of circumferentially-cracked bars for the measurement of fracture toughness,” in “ECF 11-Mechanisms and Mechanics of damage and failure,” Petit, ed., EMAS, III, Warley, West Midlands, UK, pp. 1939–1944 (1996).

    Google Scholar 

  76. T. Pardoen and F. Delannay. “Critical assessment of the application of the J integral and CTOD concepts to circumferentially cracked copper bars,” Int. J. Fracture, 79, pp. 373–391 (1996).

    Google Scholar 

  77. M. Scibetta and R. Chaouadi. “Fracture toughness derived from small circumferentially cracked bars,” in “Small specimen test techniques,” ASTM STP 1329, Corwin, Rosinski and Van Walle, eds, American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 363–380 (1998).

    Google Scholar 

  78. J. H. Giovanola, R. W. Klopp, J. E. Crocker, D. J. Alexander, W. R. Corwin and R. K. Nanstad. “Using small cracked round bars to measure the fracture toughness of a pressure vessel steel weldment: A feasibility study,” in “Small specimen test techniques, ASTM STP 1329,” Corwin, Rosinski and Van Walle, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 328–352 (1998).

    Google Scholar 

  79. K. Kussmaul, H. Uetz and M. Küri. “Production of compound fracture toughness specimens to enable a large CT specimen to be made from a small sampie volume,” Int. J. Press. Vess. and Piping, vol. 5, pp. 152–156 (1977).

    Google Scholar 

  80. M. Tomimatsu, S. Kawaguchi and M. Iida. “Reconstitution of fracture toughness specimen for surveillance test,” in “Small specimen test techniques, ASTM STP 1329,” Corwin, Rosinski and Van Walle, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 470–483 (1998).

    Google Scholar 

Further References

  • ESIS Standard, draft 4. “Proposed standard method for dynamic tensile testing,” (1997).

    Google Scholar 

  • ESIS Standard, draft 2. “Proposed standard method for dynamic compression testing,” (1999).

    Google Scholar 

References

  1. D. Miannay. “Fracture Mechanics,” Springer-Verlag (1998).

    Google Scholar 

  2. N. P. O’Dowd and C. F. Shih. “Family of crack tip fields characterized by a triaxiality parameter-I. Structure of fields,” J. Mech. Phys. Solids, 39, pp. 989–1015 (1991).

    Article  Google Scholar 

  3. R. A. Ainsworth, I. Sattari-Far, A. H. Sherry, D. G. Hootonand J. Hadley. “Development of methods for including constraint effects within the SINT AP procedures,” in “ESIS-ECF 12-Fracture from defects, Vol.II,” Brown, de los Rios and Miller, Eds., EMAS Publishing, Cradley Heath, UK, pp. 589–594 (1998).

    Google Scholar 

  4. R. Bass, W. J. McAfee, P. T. Williams and W. E. Pennell. “Fracture assessment of shallow-flaw cruciform beams tested under uni-axial and bi-axial loading conditions,” NucIear Eng. and Design, pp. (2000).

    Google Scholar 

  5. Hang Ma. “The effect of stress tri-axiality on the local c1eavage fracture stress in a granular bainitic weid steel,” Int. J. ofFracture, 89, pp. 143–157 (1998).

    Article  Google Scholar 

References

  1. D.J. Smith and S. J. Garwood. “The significance of prior overload on fracture resistance: a critical review,” Int. J. Press. Vess. and Piping, 41, pp. 255–296 (1990).

    Article  Google Scholar 

  2. J. Cheng and F. W. Noble. “The warm prestressing effect in steels undergoing intergranular fracture,” Fatigue fract. Engng. Mater. Struct., 20, 10, pp. 1399–1441 (1997).

    Article  Google Scholar 

  3. E. Roos, U. Alsman, K. Elsässer, U. Eiseie and M. Seidenfuss. “Experiments on warm prestress effect and their numerical simulation based on local approach,” in “ESIS ECF 12, Fracture from defects, vol II,” Engineering Material Advisory services Ltd, Cradley Heath, UK, pp. 939–944 (1998).

    Google Scholar 

  4. P. A. S. Reed and J. F. Knott. “Investigation of the röle of residual stresses in the warm prestress (WPS) effect. Part I-Experimental,” Fatigue Fract. Engng. Mater. Struct., 19,4, pp. 485–500 (1996).

    Article  Google Scholar 

  5. P. A. S. Reed and J. F. Knott. “lnvestigation of the role of residual stresses in the warm prestress (WPS) effect. Part II-Analysis,” Fatigue Fract. Engng. Mater. Struct., 19,4, pp. 501–513 (1996).

    Article  Google Scholar 

  6. H. Nakamura, H. Kobayashi, J. Kodaira and H. Nakazawa. “On the effect of preloading on the fracture toughness of A533 BI steel,” in “Proc. ICF 5: Fracture Mechanics,” Pergamon Press, Oxford, 2, pp. 817–824 (1981).

    Google Scholar 

  7. F. M. Mudry. “Numerical modeling of warm prestrcss effcct using a damage function for c1eavagc fracture,” in “Proc. ICF 5: Fracture Mechanics,” Pergamon Press, Oxford, 2, pp. 825–832 (1981).

    Google Scholar 

  8. G. Bemauer, W. Brocks and W. Schmitt. “Modifications of the Beremin model for c1eavage fracture in the transition region of a ferritic steel,” Engng. Fracture Mech., 64, pp. 305–325 (1999).

    Article  Google Scholar 

  9. Chell G. G. “Some fracture mechanics applications of warm prestressing to pressure vessels,” in “Proceedings 4th International Conference on press ure vessel technology,” paper C22/80, Institution of Mechanical Engineers, London, pp. 117–124 (1980).

    Google Scholar 

  10. Curry D. A. “A micromechanistic approach to the warm prestressing of ferritic steels,” Int. J. Fract., 17, pp. 335–343 (1981).

    Article  Google Scholar 

  11. D.J. Smith and S. J. Garwood. “Experimental study of effects of prior overload on fracture toughness of A 533B steel,” Int. J. Press. Vess. and Piping, 41, pp. 297–331 (1990).

    Google Scholar 

  12. D.J. Smith and S. J. Garwood. “Application of theoretical methods to predict overload effects on fracture toughness of A533B steel,” Int. J. Press. Vess. and Piping, 41, pp. 333–357 (1990).

    Article  Google Scholar 

  13. R. H. Bryan, J. G. Merkle, R. K. Nanstad and G. C. Robinson. “Pressurized thermal shock experiments with thick vessels,” in “Fracture Mechanics: nineteenth symposium, ASTM STP 969,” Cruse, ed., American Society for Testing and Materials, Philadelphia, pp. 767–783 (1988).

    Chapter  Google Scholar 

  14. H. Okamura, G. Yagawa, T. Hidaka, Y. Urabe, M. Satoh, M. Tomimatsu, K. Koyama and M. Lida. “Further experimental verification of Warm PreStressing effect under Pressurized Thermal Shock (PTS),” Trans ASME, J. Press. Vessel Techn., 118, pp. 174–180 (1996).

    Article  Google Scholar 

Further Recent Reference

  1. H. Stokl, R. Boschen, W. Schmitt, I. Varfolomeyev and J. H. Chen. “Quantification of the warm prestressing effect in ashape welded 10 MnMoNi 5-5 material,” Engng. Fracture Mech., 67, pp. 119–137 (2000).

    Article  Google Scholar 

References

  1. CODAP-Annexe MA2. « Prévention du risque de rupture Fragile, » in « Code Franc,:ais de Construction des appareils à pression, » published by SNCTSyndicat National de la Chaudronnerie, de la Tolerie et de la tuyauterie Industrielle, Courbevoie, Paris-la-Défense (1999).

    Google Scholar 

  2. G. Sanz. « Risque de rupture brutale-Essai de mise au point d’une methode quantitative de choix des qualités d’aciers vis-a-vis du risque de rupture fragile, » published by AFNOR, Paris-la-Défense (1981).

    Google Scholar 

  3. J. M. Barsom and S. T. Rolfe. “Correlations between K1C and Charpy V-notch test results in the transition temperature range,” in ASTM STP 466, pp. 281–302 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miannay, D.P. (2001). Structural-Integrity Assessment: The Relevant Fracture-Toughness Evaluation. In: Time-Dependent Fracture Mechanics. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0155-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0155-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6537-5

  • Online ISBN: 978-1-4613-0155-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics