Skip to main content

Cartesian Grid Methods for Fluid Flow in Complex Geometries

  • Conference paper
Computational Modeling in Biological Fluid Dynamics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 124))

Abstract

Biological fluid dynamics typically involves geometrically complicated structures which are often deforming in time. We give a brief overview of some approaches based on using fixed Cartesian grids instead of attempting to use a grid which conforms to the boundary. Both finite-difference and finite-volume methods are discussed, as well as a combined approach which has recently been used for computing incompressible flow using the streamfunction-vorticity formulation of the incompressible Navier-Stokes equations.

The work of the both authors was supported in part by DOE grant DE-FG03-96ER25292 and NSF grants DMS-9505021 and DMS-9626645.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Acheson, Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series, Clarendon Press, 1990.

    Google Scholar 

  2. A.S. Almgren, J.B. Bell, P. Colella, and T. Marthaler, A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J. Sci. Comput., 18 (1997), pp. 1289–1309.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Anderson, Vorticity Boundary Conditions and Boundary Vorticity Generation for Two-dimensional Viscous Incompressible Flows, J. Comput. Phys., 80 (1989), pp. 72–97.

    Article  MATH  Google Scholar 

  4. M. Berger and R.J. Leveque, An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries. AIAA paper AIAA-89-1930, 1989.

    Google Scholar 

  5. —, Stable boundary conditions for Cartesian grid calculations, Computing Systems in Engineering, 1 (1990), pp. 305–311.

    Google Scholar 

  6. R.P. Beyer, A computational model of the cochlea using the immersed boundary method, PhD thesis, University of Washington, 1989.

    Google Scholar 

  7. —, A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98 (1992), pp. 145–162.

    Google Scholar 

  8. R.P. Beyer and R.J. LeVeque, Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Num. Anal., 29 (1992), pp. 332–364.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Calhoun, A Cartesian grid method for solving the streamfunction-vorticity equations in irregular geometries, PhD thesis, University of Washington, 1999.

    Google Scholar 

  10. D. Calhoun and R.J. LeVeque, Solving the advection-diffusion equation in irregular geometries, J. Comput. Phys., 156 (2000), pp. 1–38

    MathSciNet  Google Scholar 

  11. A. Cheer and M. Koehl, Fluid flow through filtering appendages of insects, IMA Journal of Mathematics Applied in Medicine and Biology, 4 (1987), pp. 185–199.

    Article  Google Scholar 

  12. —, Paddles and Rakes: Fluid Flow through ristled Appendages of Small Organisms, J. Theor. Biol., 129 (1987), pp. 17–39.

    Article  Google Scholar 

  13. A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), pp. 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  14. —, Numerical study of slightly viscous flow, J. Fluid Mech., 75 (1973), pp. 785–796.

    Article  MathSciNet  Google Scholar 

  15. A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 1979.

    Google Scholar 

  16. M. Coutanceau and R. Bouard, Experimental determination of the main features of the vicous flow in the wake of a circular cylinder in uniform translation. Part I. Steady flow, J. Fluid Mech., 79 (1977), pp. 231–256.

    Article  Google Scholar 

  17. —, Experimental determination of the main features of the vicous flow in the wake of a circular cylinder in uniform translation. Part II. Unsteady flow, J. Fluid Mech., 79 (1977), pp. 257–272.

    Article  Google Scholar 

  18. M.S. Day, P. Colella, M.J. Lijewski, C.A. Rendleman, and D.L. Marcus, Embedded boundary algorithms for solving the Poisson equation on complex domains. Preprint LBNL-41811, Lawrence Berkeley Lab, 1998.

    Google Scholar 

  19. D. De Zeeuw and K. Powell, An adaptively-refined Cartesian mesh solver for the Euler equations, J. Comput. Phys., 104 (1993), pp. 56–68.

    Article  MATH  Google Scholar 

  20. H.V. der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Dillon, L. Fauci, A. Fogelson, and D. Gaver, Modeling Biofilm Processes Using the Immersed Boundary Method, J. Comput. Phys., 129 (1996), pp. 57–73.

    Article  MATH  Google Scholar 

  22. R. Dillon, L. Fauci, and D. Gaver, A Microscale Model of Bacterial Swimming, Chemotaxis and Substrate Transport, J. Theor. Biol., 177 (1995), pp. 325–340.

    Article  Google Scholar 

  23. W. E and J. Liu, Vorticity Boundary Condition and Related Issues for Finite Difference Schemes, J. Comput. Phys., 124 (1996), pp. 368–382.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Fauci and C.S. Peskin, A computational model of aquatic animal locomotion, J. Comput. Phys., 77 (1988), pp. 85–108.

    Article  MathSciNet  MATH  Google Scholar 

  25. L.J. Fauci, Interaction of oscillating filaments — a computational study, J. Comput. Phys., 86 (1990), pp. 294–313.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Fogelson and J. Keener, Immersed interface methods for Neumann and related problems in two and three dimensions, to appear, SIAM J. Sci. Comput.

    Google Scholar 

  27. A.L. Fogelson, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp. 111–134.

    Article  MathSciNet  MATH  Google Scholar 

  28. —, Mathematical and computational aspects of blood clotting, in Proceedings of the 11th IMACS World Congress on System Simulation and Scientific Computation, Vol. 3, B. Wahlstrom, ed., North Holland, 1985, pp. 5–8.

    Google Scholar 

  29. A.L. Fogelson and C.S. Peskin, Numerical solution of the three dimensional stokes equations in the presence of suspended particles, in Proc. SIAM Conf. Multi-phase Flow, SIAM, June 1986.

    Google Scholar 

  30. B. Fornberg, A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98 (1980), pp. 819–855.

    Article  MATH  Google Scholar 

  31. H. Forrer, Boundary Treatments for Cartesian-Grid Methods, PhD thesis, ETH-Zurich, 1997.

    Google Scholar 

  32. H. Forrer and M. Berger, Flow simulations on Cartesian grids involving complex moving geometries, in Proc. 7’th Intl. Conf. on Hyperbolic Problems, R. Jeltsch, ed., Birkhauser Verlag, 1998, pp. 315–324.

    Google Scholar 

  33. H. Forrer and R. Jeltsch, A higher-order boundary treatment for Cartesian-grid methods, J. Comput. Phys., 140 (1998), pp. 259–277.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Glowinski, T.-S. Pan, and J. Periaux, A fictitious domain method for Dirich-let problem and applications, Comp. Meth. Appl. Mech. Eng., 111 (1994), pp. 283–303.

    Article  MathSciNet  MATH  Google Scholar 

  35. —, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comp. Meth. Appl. Mech. Eng., 112 (1994), pp. 133–148.

    Article  MathSciNet  MATH  Google Scholar 

  36. T.Y. Hou, Z. Li, H. Zhao, and S. Osher, A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134 (1997), pp. 236–252.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Israeli, On the Evaluation of Iteration Parameters for the Boundary Vorticity, Studies in Applied Mathematics, LI (1972), pp. 67–71.

    Google Scholar 

  38. H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147 (1998), pp. 60–85.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Koehl, Fluid flow through hair-bearing appendages: Feeding, smelling, and swimming at low and intermediate Reynolds numbers., in Biological Fluid Dynamics, C.P. Ellington and T.J. Pedley, eds., Vol. 49, Soc. Exp. Biol. Symp, 1995, pp. 157–182.

    Google Scholar 

  40. R.J. Leveque, clawpack software. http://www.amath.washington.edu/~rj1/clawpack.html.

    Google Scholar 

  41. —, Cartesian grid methods for flow in irregular regions, in Num. Meth. Fl. Dyn. III, K.W. Morton and M.J. Baines, eds., Clarendon Press, 1988, pp. 375–382.

    Google Scholar 

  42. —, High resolution finite volume methods on arbitrary grids via wave propagation, J. Comput. Phys., 78 (1988), pp. 36–63.

    Google Scholar 

  43. —, Numerical Methods for Conservation Laws, Birkhauser-Verlag, 1990.

    Google Scholar 

  44. —, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys., 131 (1997), pp. 327–353.

    Google Scholar 

  45. R.J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp. 1019–1044.

    Article  MathSciNet  MATH  Google Scholar 

  46. —, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18 (1997), pp. 709–735.

    Article  MathSciNet  MATH  Google Scholar 

  47. Z. Li, The Immersed Interface Method — A Numerical Approach for Partial Differential Equations with Interfaces, PhD thesis, University of Washington, 1994.

    Google Scholar 

  48. —, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., 35 (1998), pp. 230–254.

    Google Scholar 

  49. —, The immersed interface method using a finite element formulation, Applied Numer. Math., 27 (1998), pp. 253–267.

    Google Scholar 

  50. X.-D. Liu, R.P. Fedkiw, and M. Kang, A boundary condition capturing method for Poisson’s equation on irregular domains. CAM Report 99-15, UCLA Mathematics Department, 1999.

    Google Scholar 

  51. A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Num. Anal., 21 (1984), pp. 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Mayo and A. Greenbaum, Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 101–118.

    Article  MathSciNet  MATH  Google Scholar 

  53. A.A. Mayo and C.S. Peskin, An implicit numerical method for fluid dynamics problems with immersed elastic boundaries, Contemp. Math., 141 (1993), pp. 261–277.

    Article  MathSciNet  Google Scholar 

  54. C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220–252.

    Article  MathSciNet  MATH  Google Scholar 

  55. —, Lectures on mathematical aspects of physiology, Lectures in Appl. Math., 19 (1981), pp. 69–107.

    MathSciNet  Google Scholar 

  56. C.S. Peskin and D.M. McQueen, Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37 (1980), pp. 113–132.

    Article  MathSciNet  MATH  Google Scholar 

  57. —, Computer-assisted design of pivoting-disc prosthetic mitral valves, J. Thorac. Cardiovasc. Surg., 86 (1983), pp. 126–135.

    Google Scholar 

  58. —, Computer-assisted design of butterfly bileaflet valves for the mitral position, Scand. J. Thorac. Cardiovasc. Surg., 19 (1985), pp. 139–148.

    Article  Google Scholar 

  59. K. Powell, Solution of the Euler and Magnetohydrodynamic Equations on Solution-Adaptive Cartesian Grids. Von Karman Institute for Fluid Dynamics Lecture Series, 1996.

    Google Scholar 

  60. L. Quartapelle and F. Valz-griz, Projection conditions on the vorticity in viscous incompressible flows, Int. J. Numer. Methods. Fluids, 1 (1981), pp. 129–144.

    Article  MATH  Google Scholar 

  61. J.J. Quirk, An alternative to unstructured grids for computing gas-dynamic flow around arbitrarily complex 2-dimensional bodies, Comput. Fluids, 23 (1994), pp. 125–142.

    Article  MATH  Google Scholar 

  62. —, A Cartesian grid approach with hierarchical refinement for compressible flows. ICASE Report No. TR-94-51, NASA Langley Research Center, 1994.

    Google Scholar 

  63. J.M. Stockie and S.I. Green, Simulating the motion of flexible pulp fibres using the immersed boundary method, J. Comput. Phys., 147 (1998), pp. 147–165.

    Article  MATH  Google Scholar 

  64. J.M. Stockie and B.T.R. Wetton, Stability analysis for the immersed fiber problem, SIAM J. Appl. Math., 55 (1995), pp. 1577–1591.

    Article  MathSciNet  MATH  Google Scholar 

  65. D. Sulsky and J.U. Brackbill, A numerical method for suspension flow, J. Comput. Phys., 96 (1991), pp. 339–368.

    Article  MATH  Google Scholar 

  66. A. Thom, The flow past circular cylinders at low speeds, Proc. Roy. Soc. A, 141 (1933), p. 651.

    Article  MATH  Google Scholar 

  67. M. Titcombe and M.J. Ward, An asymptotic study of oxygen transport from multiple capillaries to skeletal muscle tissue, to appear, SIAM J. Appl. Math., 2000.

    Google Scholar 

  68. C. Tu and C.S. Peskin, Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 1361–1376.

    Article  MathSciNet  MATH  Google Scholar 

  69. S.O. Unverdi and G. Tryggvason, Computations of multi-fluid flows, Physica D, 60 (1992), pp. 70–83.

    Article  MATH  Google Scholar 

  70. —, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100 (1992), pp. 25–37.

    Article  MATH  Google Scholar 

  71. Z.J. Wang, Vortex shedding and frequency selection in flapping flight. Submitted to the J. Fluid Mech., 1999.

    Google Scholar 

  72. A. Wiegmann, The Explicit Jump Immersed Interface Method and Interface Problems for Differential Equations, PhD thesis, University of Washington, 1998.

    Google Scholar 

  73. A. Wiegmann and K.P. Bube, The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 35 (1998), pp. 177–200.

    Article  MathSciNet  MATH  Google Scholar 

  74. —, The explicit jump immersed interface method: Finite difference methods for pde with piecewise smooth solutions, SIAM J. Numer. Anal., 37 (2000), pp. 827–862.

    Article  MathSciNet  MATH  Google Scholar 

  75. Z. Yang, A Cartesian grid method for elliptic boundary value problems in irregular regions, PhD thesis, University of Washington, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Leveque, R.J., Calhoun, D. (2001). Cartesian Grid Methods for Fluid Flow in Complex Geometries. In: Fauci, L.J., Gueron, S. (eds) Computational Modeling in Biological Fluid Dynamics. The IMA Volumes in Mathematics and its Applications, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0151-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0151-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6539-9

  • Online ISBN: 978-1-4613-0151-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics