Skip to main content

Fluid Dynamics of Animal Appendages that Capture Molecules: Arthropod Olfactory Antennae

  • Conference paper
Computational Modeling in Biological Fluid Dynamics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 124))

Abstract

Appendages bearing arrays of hair-like structures serve important biological functions in many animals from a variety of phyla. For example, feathery gills take up oxygen, hairy olfactory antennae capture odorant molecules, filamentous suspension-feeding structures catch single-celled algae, setulose appendages create ventilatory or feeding currents, and bristly legs or wings propel little animals through the surrounding water or air. To perform any of these functions, an array of hairs must interact with the fluid around it. Therefore, in order to elucidate basic rules governing how hairy appendages work, we have been studying the fluid dynamics of arrays of cylinders. The purpose of this paper is to provide a brief overview of what mathematical and physical models have taught us about fluid motion around and through arrays of hairs, and of how those insights have helped us unravel ways in which the function of hairy appendages depends on their structure and behavior. I will focus on examples of appendages that capture molecules: the olfactory antennae of various arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ache, B.W. (1982). Chemoreception and thermoreception. pp. 369–393 In H.L. Atwood and D.C. Standeman, eds. The Biology of the Crustacea, Vol. 3., New York, Academic Press.

    Chapter  Google Scholar 

  • Ache, B.W. (1988). Integration of chemosensory information in aquatic invertebrates. In J. Atema and et. al., eds. Sensory Biology of Aquatic Animals. New York, Springer-Verlag.

    Google Scholar 

  • Adam, G. and M. Delbruk (1968). Reduction in dimensionality in biological diffusion processes, pp. 198–215 In Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, eds., W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Atema, J. (1977). Functional separation of smell and taste in fish and Crustacea. pp. 165–174 In J. LeMagnen and L. MacLeod, eds. Olfaction and Taste IV. London, Information Retrieval.

    Google Scholar 

  • Atema, J. (1985). Chemoreception in the sea: Adaptations of chemoreceptors and behavior to aquatic stimulus conditions. Soc. Exp. Biol. Symp. 39:3887–3423.

    Google Scholar 

  • Atema, J. (1995). Chemical signals in the marine environment: Dispersal, detection and temporal analysis, pp. 147–159 In Chemical Ecology: The Chemistry of Biotic Interaction. Academy Press, Washington, D.C.

    Google Scholar 

  • Atema, J. and R. Voigt (1995). Behavior and Sensory Biology, pp. 313–348 In J.R. Factor, eds. Biology of the Lobster Homarus americanus. San Diego, CA, Academic Press.

    Google Scholar 

  • Baker, T.C., H.Y. Fadamiro, and A.A. Cosse (1998). Moth uses fine tuning for odour resolution. Nature 393:530.

    Article  Google Scholar 

  • Berg, H.C. and E.M. Purcell (1977). Physics of Chemoreception. Biophys. J. 20:193–217.

    Article  Google Scholar 

  • Boeckh, J., K.E. Kaissling, and D. Schneider (1965). Insect olfactory receptors. Cold Spring Harbor Symp. Quant. Biol. 30:263–280.

    Article  Google Scholar 

  • Bossert, W.H. and E.O. Wilson (1963). The analysis of olfactory communication among animals. J. Theor. Biol. 5:443–469.

    Article  Google Scholar 

  • Card, R.T. (1984). Chemo-orientation in flying insects, pp. 109–134. In W.J. Bell and R.T. Carde, eds. Chemical Ecology of Insects. Elsevier Press, Amsterdam.

    Google Scholar 

  • Cheer, A.Y.L. and M.A.R. Koehl (1987a) Paddles and rakes: Fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129:185–199.

    Article  Google Scholar 

  • Cheer, A.Y.L. and M.A.R. Koehl (1987b). Fluid flow through filtering appendages of insects. IMA J. Math. Appl. Med. Biol. 4:185–199.

    Article  Google Scholar 

  • Davies, C.N. (1973). Air Filtration. Academic Press, New York.

    Google Scholar 

  • Desimone, J.A. (1981). Physicochemical principles in taste and olfaction, pp. 213–229. In Taste and Olfaction. Academic Press, New York.

    Chapter  Google Scholar 

  • Fuchs, N.A. (1964). The Mechanics of Aerosols. Oxford University Press, Oxford.

    Google Scholar 

  • Futrelle, R.P. (1984). How molecules get to their detectors: The physics of diffusion of insect pheromones. Trans. Neorosci. April, 116–120.

    Google Scholar 

  • Getchell, T.V. and M.L. Getchell (1977). Early events in vertebrate olfaction. Chem. Senses 2:313–326.

    Article  Google Scholar 

  • Gleeson, R.A. (1982). Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, Callinectes sapidus. Biol. Bull. 163:162–171.

    Article  Google Scholar 

  • Gleeson, R.A., W.E.S. Carr and H.G. Trapido-Rosenthal (1993). Morphological characteristics facilitating stimulus access and removal in the olfactory organ of the spiny lobster, Panulirus argus: Insight from the design. Chemical Senses. 18:67–75.

    Article  Google Scholar 

  • Gnatzy, W., W. Mohren, and R.A. Steinbrecht (1984). Pheromone receptors in Bombyx mori and Antheraea pernyi. II. Morphometric analysis. Cell Tiss. Res. 235:35–42.

    Google Scholar 

  • Goldman, J.A. and M.A.R. Koehl. Fluid dynamic design of lobster olfactory organs: High-speed kinematic analysis of antennule flicking in Panulirus argus: Chemical Senses (submitted).

    Google Scholar 

  • Gomez, G. and J. Atema (1996). Temporal resolution in olfaction: Stimulus integration time of lobster chemoreceptor cells. J. Exp. Biol. 199:1771–1779.

    Google Scholar 

  • Grunert, U. and B.W. Ache (1988). Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster Panulirus argus. Cell Tissue Res. 251:95–103.

    Article  Google Scholar 

  • Hallberg, E., K.U.I. Johansson and R. Elofsson (1992). The aesthetasc concept: Structural variations of putative olfactory receptor cell complexes in crustaceans. Microsc. Res. Techn. 22:336–350.

    Article  Google Scholar 

  • Hansen, B. and P. Tiselius (1992). Flow through the feeding structures of suspension feeding zooplankton: A physical model approach. J. Plankton Res. 14:821–834.

    Article  Google Scholar 

  • Heimann, P. (1984). Fine structure and molting of the aesthetasc sense organs on the antennules of the isopod, Asellus aquaticus (Crustacea). Cell Tissue Res. 235:117–128.

    Article  Google Scholar 

  • Koehl, M.A.R. (1993). Hairy little legs: Feeding, smelling, and swimming at low Reynolds numbers. Contemp. Math. 141:33–64.

    Article  Google Scholar 

  • Koehl, M.A.R. (1995). Fluid flow through hair-bearing appendages: Feeding, smelling, and swimming at low and intermediate Reynolds number. In C.P. Ellington, T.J. Pedley, eds., Biological Fluid Dynamics, Soc. Exp. Biol. Symp. 49:157–182.

    Google Scholar 

  • Koehl, M.A.R. (1996). Small-Scale fluid dynamics of olfactory antennae. Mar. Fresh. Behav. Physiol. 27:127–141.

    Article  Google Scholar 

  • Koehl, M.A.R. (1998). Small-Scale hydrodynamics of feeding appendages of marine animals. Oceanogr. 11:10–12.

    Article  Google Scholar 

  • Koehl, M.A.R. and J.R. Strickler (1981). Copepod feeding currents: Food capture at low Reynolds number. Limnol. Oceanogr. 26:1062–1073.

    Article  Google Scholar 

  • Koo, J.-K. and D.F. James (1973). Fluid flow around and through a screen. J. Fluid Mech. 60:513–538.

    Article  MATH  Google Scholar 

  • Kramer, E. (1986). Turbulent diffusion and pheromone-triggered anemotaxis, pp. 59–67. In T.L. Payne, M.C. Birch and C.E.J. Kennedy, eds. Mechanisms in Insect Olfaction. Oxford: Clarendon Press.

    Google Scholar 

  • Kramer, E. (1992). Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds. J. Insect Behav. 5:83–97.

    Article  Google Scholar 

  • Labarbera, M. (1984). Feeding currents and particle capture mechanisms in suspension feeding animals. Am. Zool. 24:71–84.

    Google Scholar 

  • Laverack, M. S. (1988). The diversity of chemoreceptors, pp. 287–317 In Atema, J. [ed.], Sensory Biology of Aquatic Animals. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Laws, E.M. and J.L. Livesey (1978). Flow through screens. Ann. Rev. Fluid Mech. 10:247–266.

    Article  Google Scholar 

  • Leonard, A.B.P. (1992). The Biomechanics, Autecology and Behavior of Suspension-Feeding in Crinoid Echinoderms. Ph.D. Dissertation, University of California, San Diego.

    Google Scholar 

  • Loudon, C. (1990). Empirical test of filtering theory: Particle capture by rectangular-mesh nets. Limnol. Oceanogr. 35:143–148.

    Article  Google Scholar 

  • Loudon, C., B.A. Best, and M.A.R. Koehl (1994). When does motion relative to neighboring surfaces alter the flow through an array of hairs? J. Exp. Biol. 193:233–254.

    Google Scholar 

  • Loudon, C. and M.A.R. Koehl. Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae. J. Exp. Biol. (in press).

    Google Scholar 

  • Mafra-Neto, A. and R.T. Card (1994). Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    Article  Google Scholar 

  • Mankin, R.W. and M.S. Mayer (1984). The insect antenna is not a molecular sieve. Experientia 40:1251–1252.

    Article  Google Scholar 

  • Marscall, H.-P. and B.W. Ache (1989). Response dynamics of lobster olfactory neurons during simulated natural sampling. Chem. Senses 14:725.

    Google Scholar 

  • Mead, K.S., M.A.R. Koehl, and M.J. O’Donnell. (1999). Stomatopod sniffing: The scaling of chemosensory sensillae and flicking behavior with body size. J. Exp. Mar. Biol. Ecol. 241:235–261.

    Article  Google Scholar 

  • Mead, K.S. and M.A.R. Koehl. Stomatopod antennule design: The asymmetry, sampling efficiency, and ontogeny of olfactory flicking. J. Exp. Biol, (in press).

    Google Scholar 

  • Michel, W.C., T.S. Mcklintock, and B.W. Ache (1991). Inhibition of lobster olfactory receptor cells by an odor-activated potassium conductance. J. Neurophysiology 65:446–453.

    Google Scholar 

  • Moore, P.A. (1994). A model of the role of adaptation and disadaptation in olfactory receptor neurons: implications for the coding of temporal and intensity patterns in odor signals. Chemical Senses. 19:71–86.

    Article  Google Scholar 

  • Moore, P.A., J. Atema and G.A. Gerhardt (1991). Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus. Chemical Senses 16:663–674.

    Article  Google Scholar 

  • Moore, P.A., G.A. Gerhardt, and J. Atema (1989). High resolution spatio-temporal analysis of aquatic chemical signals using microchemical electrodes. Chemical Senses 14:829–840.

    Article  Google Scholar 

  • Murlis, J. (1986). The structure of odour plumes, pp. 27–38. In T.L. Payne, ed. Mechanisms of Insect Olfaction, Clarendon Press, NJ.

    Google Scholar 

  • Murlis, J., J.S. Elkinton, and R.T. Card (1992). Odor plumes and how insects use them. Ann. Rev. Entomol. 37:505–532.

    Article  Google Scholar 

  • Murlis, J. and C.D. Jones (1981). Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.

    Article  Google Scholar 

  • Murlis, J., M.A. Willis and R.T. Carde (1990). Odour signals: patterns in time and space, pp. 6–17 In K. Doving, ed. Proceedings of the X International Symposium on Olfaction and Taste, Oslo.

    Google Scholar 

  • Murray, J.D. (1977). Reduction of dimensionability in diffusion processes: Antenna receptors of moths, pp. 83–127 In Lectures on Nonlinear-Differential-Equation Models in Biology, Oxford University Press, Oxford.

    Google Scholar 

  • Nachbar, R.B. and T.H. Morton (1981). A gas chromatograph (GPLC) model for the sense of smell: Variations of olfactory sensitivity with conditions of stimulation. J. Theor. Biol. 84:387–407.

    Article  Google Scholar 

  • Pophof, B. (1997). Olfactory responses recorded from sensilla coeloconica of the silkworm Bombyx mori. Physiol. Entomol. 22:239–248.

    Article  Google Scholar 

  • Rubenstein, D.I. and M.A.R. Koehl (1977). The mechanisms of filter feeding: Some theoretical considerations. Amer. Natur. 26:981–994.

    Google Scholar 

  • Schmidt, B.C. and B.W. Ache (1979). Olfaction: Responses of a decapod crustacean are enhanced by flicking. Science 205:204–206.

    Article  Google Scholar 

  • Shimeta, J. and P.A. Jumars, (1991). Physical mechanisms and rates of particle capture by suspension-feeders. Oceanogr. Mar. Biol. Annu. Rev. 29:191–257.

    Google Scholar 

  • Silvester, N.R. (1983). Some hydrodynamic aspects of filter feeding with rectangularmesh nets. J. Theor. Biol. 103:265–286.

    Article  Google Scholar 

  • Snow, P.J. (1973). The antennular activities of the hermit crab, Pagarus alaskensis (Benedict). J. Exp. Biol. 58:745–765.

    Google Scholar 

  • Speilman, L.A. and S.L. Goren (1968). Model for predicting pressure drop and filtration efficiency in fibrous media. Environ. Sci. Technol. 2:279–287.

    Article  Google Scholar 

  • Stacey, M., K.S. Mead, and M.A.R. Koehl. Molecule capture by olfactory antennules: Mantis shrimp. J. Math. Biol. (submitted).

    Google Scholar 

  • Steinbrecht, R.A. (1992). Experimental morphology of insect olfaction: tracer studies, x-ray microanalysis, autoradiography, and immunochemistry with silkmoth antennae. Microscopy Res. and Tech. 22:336–350.

    Article  Google Scholar 

  • Tamada, K. and H. Fujikawa (1957). The steady two-dimensional flow of viscous fluid at low Reynolds numbers passing through an infinite row of equal parallel circular cylinders. Quart. J. Mech. Appl. Math. 10:425–432.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, G.I. and G.K. Batchelor (1949). The effects of wire gauze on small disturbances in uniform stream. Quart. J. Mech. Appl. Math. 2:1–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Vickers, N.J. and T.C. Baker (1997). Flight of Heliothis virescens males in the field in response to sex pheromone. Physiol. Entomol. 22:277–285.

    Article  Google Scholar 

  • Vogel, S. (1983). How much air passes through a silkmoth’s antenna? J. Insect Physiol. 29:597–602.

    Article  Google Scholar 

  • Weissburg, M.J. and R.K. Zimmer-faust (1994). Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol. 197:349–375.

    Google Scholar 

  • Willis, M.A., C.T. David, J. Murlis and R.T. Cardé (1994). Effects of pheromone plume structure and visual stimuli on the pheromone-modulated upwind flight of male gypsy moths (Lumantria dispar) in a forest (Lepidoptera, Lymantriidae). J. Insect Behav. 7:385–409.

    Article  Google Scholar 

  • Zacharuk, R.Y. (1985). Antennae and sensilla, pp. 1–69. In G.A. Kerkut and L.I. Gilbert, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology, New York, Pergamon Press.

    Google Scholar 

  • Zimmer-Faust, R.K. (1989). The relationship between chemoreception and foraging behavior in crustaceans. Limnol. Oceanogr. 34:1367–1374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Koehl, M.A.R. (2001). Fluid Dynamics of Animal Appendages that Capture Molecules: Arthropod Olfactory Antennae. In: Fauci, L.J., Gueron, S. (eds) Computational Modeling in Biological Fluid Dynamics. The IMA Volumes in Mathematics and its Applications, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0151-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0151-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6539-9

  • Online ISBN: 978-1-4613-0151-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics