Unsteady Aerodynamics of Two Dimensional Insect Flight

  • Lisa J. Fauci
  • Shay Gueron
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 124)


Motivated by our interest in unsteady aerodynamics of insect flight, we compute the Navier-Stokes equation around a two dimensional flapping wing. The analysis of unsteady flows in forward flight reveals a mechanism of frequency selection, which results from the two intrinsic time scales associated with the shedding of leading and trailing edge vortices. The predicted preferred frequency scales inversely with the size of the wing, which is consistent with the zoological observation. The computation of hovering flight uncovers an intrinsic mechanism of generating lift by creating a downward jet of counter-rotating vortex pairs. The average computed forces in a generic hovering flight are shown to be sufficient to support typical insect weight.


Lift Coefficient Vorticity Field Lead Edge Vortex Forward Velocity Edge Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Weis-Fogh and M. Jensen, Proc. Roy. Soc. B. 239 239, 415 (1956).Google Scholar
  2. [2]
    T. Maxworthy, Ann. Rev. Fluid Mech. 13, 329 (1981).CrossRefGoogle Scholar
  3. [3]
    C. P. Ellington, Phil. Trans. R. Soc. Lond. B 305, 1 (1984).CrossRefGoogle Scholar
  4. [4]
    G. R. Spedding, Contemporary Mathematics 141, 401 (1993).CrossRefGoogle Scholar
  5. [5]
    C. P. Ellington, C. van den Berg, A. P. Willmott, and A. L. R. Thomas, Nature 384, 626 (1996).CrossRefGoogle Scholar
  6. [6]
    M. H. Dickinson, F. O. Lehmann, and S. P. Sane, Science 284, 1954 (1999).CrossRefGoogle Scholar
  7. [7]
    Z. J. Wang, J. Fluid Mech. 410, 323 (2000).CrossRefzbMATHGoogle Scholar
  8. [8]
    Z. J. Wang, Phys. Rev. Lett. 85,10, 2035 (2000).CrossRefGoogle Scholar
  9. [9]
    P. Freymuth, K. Gustavson, and R. Leben, in Votex method and vortex motion, edited by K. Gustavson and J. Sethian (SIAM, Philadelphia, 1991), p. 143.CrossRefGoogle Scholar
  10. [10]
    H. Liu et al., J. Exp. Biol. 201, 461 (1998).Google Scholar
  11. [11]
    W. E and J. Liu, J. Comp. Phys. 126, 122 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Z. J. Wang, J. of Comp. Phys. 153, 666 (1999).CrossRefGoogle Scholar
  13. [13]
    M. Coutanceau and R. Bouard, J. Fluid Mech. 79, 231 (1977).CrossRefGoogle Scholar
  14. [14]
    R. Bouard and M. Coutanceau, J. Fluid Mech. 101, 583 (1980).CrossRefGoogle Scholar
  15. [15]
    Z. J. Wang, J.-G. Liu, and S. Childress, Phys. Fluids. 11, 9 (1999).MathSciNetzbMATHGoogle Scholar
  16. [16]
    M. S. Triantafyllou, G. S. Triantafyllou, and R. Gopalkrishnan, Phys. Fluids A 3, 12 (1991).CrossRefGoogle Scholar
  17. [17]
    R. A. Norberg, In Swimming and Flying in Nature (ed. T. Y. Wu, C. J. Brokaw and C. Brennen).Google Scholar
  18. [18]
    H. Wagner, Z. angew. Math. Mech. 5, 17 (1925).zbMATHGoogle Scholar
  19. [19]
    C. H. Greenewalt, Dimensional Relationships for Flying Animals, publication 4477 (Smithsonian Miscellaneous Collections, Washington D.C., 1962).Google Scholar
  20. [20]
    S. J. Lighthill, J. Fluid Mech. 60, (1973).Google Scholar
  21. [21]
    J. Rayner, J. Fluid Mech. 91, 697 (1979).CrossRefzbMATHGoogle Scholar
  22. [22]
    M. J. Lighthill, Mathematical Biofluiddynamics, SIAM, Philadelphia, 1975.CrossRefzbMATHGoogle Scholar
  23. [23]
    M. Cloupeau, J. F. Devillers, and D. Devezeaux, J. Exp. Biol. 80, 1 (1979).Google Scholar
  24. [24]
    A. M. Kuethe and C.-Y. Chow, Foundations of Aerodynamics John Wiley & Sons. New York, 1976.Google Scholar
  25. [25]
    J. M. Wakeling, and C. P. Ellington, J. Exp. Biol. 200, 557 (1997), S. Savage, B. G. Newman, and D. T.-M. Wong, J. exp. Biol. 83, 59 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Lisa J. Fauci
    • 1
  • Shay Gueron
    • 2
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA
  2. 2.Department of MathematicsTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations