Skip to main content

Biomarkers and the Assessment of Uterine Receptivity

  • Conference paper
ART and the Human Blastocyst

Part of the book series: Proceedings in the Serono Symposia USA Series ((SERONOSYMP))

  • 121 Accesses

Abstract

The use of biomarkers is an expanding and challenging area of biomedical research. At the turn of twenthieth century, we can look back proudly at the steady advances in the field of medicine. In 1999, the NIH organized a symposium on the use of biomarkers for the diagnosis and treatment of a wide variety of medical conditions (http://www4.od.nih.gov/biomarkers/index.htm). It was pointed out during this conference that efficient use and selection of appropriate biomarkers in diagnosis and assessment of any condition or interest requires an extensive infrastructure of investigators, comprised of: (1) an environment in which basic science can proceed to translational research; (2) availability of technological resources; and (3) clinical researchers, biostatisticians, and epidemiologists who design studies to validate the use of biomarkers. As interest in the assessment of the endometrium has grown, many of these concepts involving biomarkers will need to be applied to the data emerging on endometrial markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abma JC, Chandra A, Mosher WD, Peterson L, Piccinino L. Fertility, family planning, and women’s health: new data from the 1995 National Survey of Family Growth. Center for Disease Control and Prevention 1997;19:Series 23.

    Google Scholar 

  2. Marchbanks PA, Peterson HB, Rubin GL, Wingo PA. Research on infertility: definition makes a difference. The Cancer and Steroid Hormone Study Group. Am J Epidemiol 1989;130:259–67.

    Google Scholar 

  3. Kim HH, Hornstein MD. Unexplained infertility: defining the problem and understanding study design. Infert Reprod Med Clin NA 1997;8:487–99.

    Google Scholar 

  4. Anderson TL, Hodgen GD. Uterine receptivity in the primate. Prog Clin Biol Res 1989;294:389–99.

    Google Scholar 

  5. Rogers PAW, Murphy CR. Uterine receptivity for implantation: human studies. In: Yoshinaga K, ed. Blastocyst implantation. Boston: Adams Publishing Group, 1989:231–38.

    Google Scholar 

  6. Finn CA, Martin L. The control of implantation. J Reprod Fertil 1974;39:195–206.

    Google Scholar 

  7. Shapiro SS, Johnson MH, Jr. Progesterone altered amino acid accumulation by human endometrium in vitro. Biol Reprod 1989;40:555–64.

    Google Scholar 

  8. Beier HM. Oviducal and uterine fluids. J Reprod Fertil 1974;37:221–37.

    Google Scholar 

  9. Psychoyos A. Hormonal control of ovoimplantation. Vitams Horm 1973;31:201–56.

    Google Scholar 

  10. Hodgen GD. Surrogate embryo transfer combined with estrogen-progesterone therapy in monkeys: implantation, gestation, and delivery without ovaries. JAMA 1983;250:2167–71.

    Google Scholar 

  11. Navot D, Bergh PA, Williams M, et al. An insight into early reproductive processes through the in vivo model of ovum donation. J Clin Endocrinol Metab 1991;72:408–14.

    Google Scholar 

  12. Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 1992;58:537–42.

    Google Scholar 

  13. Hertig AT, Rock J, Adams EC. A description of 34 human ova within the first 17 days of development. Am J Anat 1956;98:435–93.

    Google Scholar 

  14. Navot D, Bergh P. Preparation of the human endometrium for implantation. Ann NY Acad Sci 1991;622:212–19.

    Google Scholar 

  15. Navot D, Scott RT, Droesch K, Veeck LL, Liu HC, Rosenwaks Z. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril 1991;55:114–18.

    Google Scholar 

  16. Brenner RM, West NB. Hormonal regulation of the reproductive tract in female mammals. Ann Rev Physiol 1975;37:273–302.

    Google Scholar 

  17. Brenner RM, West NB, McClellan MC. Estrogen and progestin receptors in the reproductive tract of male and female primates. Biol Reprod 1990;42:11–19.

    Google Scholar 

  18. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS, Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 1988;67:334–40.

    Google Scholar 

  19. Noyes RW, Hertig AI, Rock J. Dating the endometrial biopsy. Fertil Steril 1950;1:3–25.

    Google Scholar 

  20. Jones GS. Some newer aspects of management of infertility. JAMA 1949;141:1123–29.

    Google Scholar 

  21. Fritz M.A, Lessey BA. Defective luteal function. In: Fraser IS, Jansen RPS, Lobo RA, Whitehead MI, eds. Estrogens and progestogens in clinical practice. London: Churchhill Livingstone, 1998:437–94.

    Google Scholar 

  22. Lessey BA, Castelbaum AJ, Harris J, Meyer WR, Wolf L, Fritz MA. Use of integrins to date the endometrium. Fertil Steril 2000;73:779–87.

    Google Scholar 

  23. Lessey BA, Castelbaum AJ, Sawin SJ, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril 1995;63:535–42.

    Google Scholar 

  24. Stephenson MD. Frequency of factors associated with habitual abortion in 197 couples. Fertil Steril 1996;66:24–29.

    Google Scholar 

  25. Wilcox AJ, Baird DD, Wenberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999;340:1796–99.

    Google Scholar 

  26. Batista MC, Cartledge TP, Merino MJ, et al. Midluteal phase endometrial biopsy does not accurately predict luteal function. Fertil Steril 1993;59:294–300.

    Google Scholar 

  27. Lessey BA, Castelbaum AJ, Sawin SJ, et al. Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab 1994;79:643–49.

    Google Scholar 

  28. Meyer WR, Castelbaum AJ, Somkuti S, et al. Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod 1997;12:1393–98.

    Google Scholar 

  29. Somkuti S, Appenzeller MF, Lessey BA. Advances in the assessment of endometrial function. Infert Reprod Med Clin NA 1995;6:303–28.

    Google Scholar 

  30. Yaron Y, Botchan A, Amit A, Peyser MR, David MP, Lessing JB. Endometrial receptivity in the light of modem assisted reproductive technologies. Fertil Steril 1994;62:225–32.

    Google Scholar 

  31. Garcia E, Bouchard P, De Brux J, et al. Use of immunoctyochemistry of progesterone and estrogen receptors for endometrial dating. J Clin Endocrinol Metab 1988;67:80–87.

    Google Scholar 

  32. Geisert RO, Pratt TN, Bazer FW, Mayes JS, Watson GH. Immunocytochemical localization and changes in endometrial progestin receptor protein during the porcine oestrous cycle and early pregnancy. Reprod Fertil Dev 1994;6:749–60.

    Google Scholar 

  33. Tan J, Paria BC, Dey SK, Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology 1999;140:5310–21.

    Google Scholar 

  34. Lessey BA, Yeh IT, Castelbaum AJ, et al. Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation. Fertil Steril 1996;65:477–83.

    Google Scholar 

  35. Lovely LP, Appa Rao KBC, Gui Y, Lessey BA. Characterization of the androgen receptor in a well-differentiated endometrial adenocarcinoma cell line (lshikawa). J Steroid Biochem Mol Biol 2000;74:235–41.

    Google Scholar 

  36. Zhu LJ, Cullinan-Bove K, Polihronis M, Bagchi MK, Bagchi IC. Calcitonin is a progesterone-regulated marker that forecasts the receptive state of endometrium during implantation. Endocrinology 1998;139:3923–34.

    Google Scholar 

  37. Kumar S, Zhu LJ, Polihronis M, et al. Progesterone induces caIcitonin gene expression in human endometrium within the putative window of implantation. J Clin Endocrinol Metab 1998;83:4443–50.

    Google Scholar 

  38. Zhu LJ, Bagchi MK, Bagchi IC. Attenuation of caIcitonin gene expression in pregnant rat uterus leads to a block in embryonic implantation. Endocrinology 1998; 139:330–39.

    Google Scholar 

  39. Wang J, Rout UK, Bagchi IC, Annant DR. Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation by caIcitonin. Development 1998;125:4293–302.

    Google Scholar 

  40. Lessey BA. Endometrial integrins and the establishment of uterine receptivity. Hum Reprod 1998;13(Suppl. 3):247–58.

    Google Scholar 

  41. Lessey BA. Integrins and uterine receptivity. In: Carson DD, ed. Embryo implantation: molecular, cellular and c1inical aspects. New York: Springer-Verlag, 1999:210–22.

    Google Scholar 

  42. Creus M, Balasch J, Ordi J, et al. Integrin expression in nonnal and out-of-phase endometria. Hum Reprod 1998;13:3460–68.

    Google Scholar 

  43. Hii LPP, Rogers PAW. Endometrial vascular and glandular expression of integrin αvβ3 in women with and withoutendometriosis. Hum Reprod 1998;13:1030–35.

    Google Scholar 

  44. Giudice LC. Potential biochemical markers of uterine receptivity. Hum Reprod 1999;14(Suppl. 2):3–16.

    Google Scholar 

  45. Bronson RA, Fusi FM. Integrins and human reproduction. Mol Hum Reprod 1996;2:153–68.

    Google Scholar 

  46. Sueoka K, Shiokawa S, Miyazaki T, Kuji N, Tanaka M, Yoshimura Y. Integrins and reproductive physiology: expression and modulation in fertilization, embryogensis, and implantation. Fertil Steril 1997;67:799–811.

    Google Scholar 

  47. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the αnβ3 integrin adversely affects implantation in the mouse. Biol Reprod 2000;62:1285–90.

    Google Scholar 

  48. Lessey BA, Damjanovich L, Coutifaris C, Castelbaum A, Albelda SM, Buck CA. Integrin adhesion molecules in the human endometrium. Correlation with the nonnal and abnonnal menstrual cycle. J Clin luvest 1992;90:188–95.

    Google Scholar 

  49. Tabibzadeh S. Patterns of expression of integrin molecules in human endometrium throughout the menstrual cycle. Hum Reprod 1992;7:876–82.

    Google Scholar 

  50. Lessey BA, Castelbaum AJ, Buck CA, Lei Y, Yowell CW, Sun J. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy. Fertil Steril 1994;62:497–506.

    Google Scholar 

  51. Albers A, Thie M, Hohn HP, Denker HW. Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cells during the menstrual cycle. Acta Anat (Basel) 1995;153:12–19.

    Google Scholar 

  52. Lessey BA, Albelda S, Buck CA, et al. Distribution of integrin cell adhesion molecules in endometrial cancer. Am J Pathol 1995;146:717–26.

    Google Scholar 

  53. Lessey BA, Ilesanmi AO, Sun J, Lessey MA, Harris J, Chwalisz K. Luminal and glandular endometrial epithelium express integrins differentially throughout the menstrual cycle: implications for implantation, contraception, and infertility. Am J Reprod Immunol 1996;35:195–204.

    Google Scholar 

  54. Aplin JD, Spanswick C, Behzad F, Kimber SJ, Vicovac L. Integrins β5, β3, αv are apically distributed in endometrial epithelium. Mol Hum Reprod 1996;2:527–34.

    Google Scholar 

  55. Annant DR, Kaplan HA, Mover H, Lennarz WJ. The effect of hexapeptides on attachment and outgrowth of mouse blastocysts cultured in vitro: evidence for the involvement of the cell recognition tripeptide Arg-Gly-Asp. Proc NatI Acad Sci USA 1986;83:6751–55.

    Google Scholar 

  56. Yelian FD, Yang Y, Hirata JD, Schultz JF, Annant DR. Molecular interactions between fibronectin and integrins during mouse blastocyst outgrowth. Mol Reprod Dev 1995;41:435–48.

    Google Scholar 

  57. Turpeenniemi-Hujanen T, Feinberg RF, Kauppila A, Puistola U. Extracellular matrix interactions in early human embryos: implications for nonnal implantation events. Fertil Steril 1995;64:132–38.

    Google Scholar 

  58. Shiokawa S, Yoshimura Y, Sawa H, et al. Functional role of Arg-Gly-Asp (RGD)-binding sites on β1 integrin in embryo implantation using mouse blastocysts and human decidua. Biol Reprod 1999;60:1468–74.

    Google Scholar 

  59. Brooks PC, Strömblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP–2 to the surface of invasive cells by interaction with integrin α vβ3. Cell 1996;85:683–93.

    Google Scholar 

  60. Murray MJ, Lessey BA. Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin Reprod Endocrinol 1999;17:275–90.

    Google Scholar 

  61. Lanteri E, Pistritto M, Bartoloni G, Cordaro S, Stivala F, Montoneri C. Expression of α6 and β4 integrin subunits on human endometrium throughout the menstrual cycle and during early pregnancy. Fertil Steril 1998;69:37–40.

    Google Scholar 

  62. Murray MJ, Zhang JN, Lessey BA. Expression of α6 and β4 integrin subunits throughout the menstrual cycle: no correlation with uterine receptivity. Fertil Steril 1999;72:522–26.

    Google Scholar 

  63. Yaegashi N, Fujita N, Yajima A, Nakamura M. Menstrual cycle dependent expression of CD44 in nonnal human endometrium. Hum Pathol 1995;26:862–65.

    Google Scholar 

  64. Saegusa M, Hashimura M, Okayasu I. CD44 expression in normal, hyperplastic, and malignant endometrium. J Pathol 1998;184:297–306.

    Google Scholar 

  65. Fukuda MN, Sato T, Nakayama J, et al. Trophinin and tastin, a novel cell adhesion molecule complex with potential involvement in embryo implantation. Genes Dev 1995;9:1199–210.

    Google Scholar 

  66. MacCalman CD, Furth EE, Omigbodun A, Bronner M, Coutifaris C, Strauss JF III. Regulated expression of cadherin–11 in human epithelial cells: a role for cadherin–11 in trophoblast-endometrium interactions? Dev Dyn 1996;206:201–11.

    Google Scholar 

  67. Getsios S, Chen GTC, Stephenson MD, Leclerc P, Blaschuk OW, MacCalman CD. Regulated expression of cadherin–6 and cadherin–11 in the glandular epithelial and stromal cells of the human endometrium. Dev Dyn 1998;211:238–47.

    Google Scholar 

  68. Behzad F, Scif MW, Campbell S, Aplin JD. Expression of two isoforms of CD44 in human endometrium. Biol Reprod 1994;51:739–47.

    Google Scholar 

  69. Scif MW, Aplin JD, Buckley CH. Luteal phase defect: the possibility of an immunohistochemical diagnosis. Fertil Steril 1989;51:273–79.

    Google Scholar 

  70. Graham RA, Scif MW, Aplin JD, et al. An endometrial factor in unexplained infertility. Br Med J 1990;300:1428–31.

    Google Scholar 

  71. Carson DD, Rohde LH, Surveyor G. Cell surface glycoconjugates as modulators of embryo attachment to uterine epithelial cells. Int J Biochem 1994;26:1269–77.

    Google Scholar 

  72. Hild-Petito S, Fazleabas AT, Julian J, Carson DD. Mucin (Muc–1) expression is differentially regulated in uterine luminal and glandular epithelia of the baboon (Papio anubis). Biol Reprod 1996;54:939–47.

    Google Scholar 

  73. Aplin JD, Scif MW, Graham RA, Hey NA, Behzad F, Campbell S. The endometrial cell surface and implantation: expression of the polymorphic mucin MUC–1 and adhesion molecules during the endometrial cycle. Ann NY Acad Sci 1994;734:103–21.

    Google Scholar 

  74. Kliman HJ, Feinberg RF, Schwartz LB, Feinman MA, Lavi E, Meaddough EL. A mucin-like glycoprotein identified by MAG (mouse ascites Golgi) antibodies: menstrual cycle-dependent localization in human endometrium. Am J Pathol 1995;146:166–81.

    Google Scholar 

  75. Rutanen EM, Seppala M. Insulin-like growth factor binding protein–1 in female reproductive functions. Int J Gynaecol Obstet 1992;39:3–9.

    Google Scholar 

  76. Oehninger S, Coddington CC, Hodgen GD, Seppala M. Factors affecting fertilization: endometrial placental protein 14 reduces the capacity of human spermatozoa to bind to the human zona pellucida. Fertil Steril 1995;63:377–83.

    Google Scholar 

  77. Clark GF, Oehninger S, Patankar MS, et al. A role for glycoconjugates in human development: the human feto-embryonic defense system hypothesis. Hum Reprod 1996;11:467–73.

    Google Scholar 

  78. Westergaard LG, Wiberg N, Yding C, et al. Circulating concentrations of placenta protein 14 during the natural menstrual cycle in women significantly reflect endometrial receptivity to implantation and pregnancy during successive assisted reproduction cycles. HumReprod 1998;13:2612–19.

    Google Scholar 

  79. Klentzeris LD, Bulmer JN, Seppälä M, Li TC, Warren MA, Cooke ID. Placental protein 14 in cycles with normal and retarded endometrial differentiation. Hum Reprod 1994;9:394–98.

    Google Scholar 

  80. Tulppala M, Julkunen M, Tiitinen A, Stenman U-H, Seppälä M. Habitual aborti on is accompanied by low serum levels of placental protein 14 in the luteal phase of the fertile cycle. Fertil Steril 1995;63:792–95.

    Google Scholar 

  81. Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci USA 1991;88:11408–12.

    Google Scholar 

  82. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992;359:76–79.

    Google Scholar 

  83. Cullinan EB, Abbondanzo SJ, Anderson PS, Pollard JW, Lessey BA, Stewart CL. Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine paracrine function in regulating embryo implantation. Proc Natl Acad Sci USA 1996;93:3115–20.

    Google Scholar 

  84. Das SK, Wang X-N, Paria BC, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-reeeptor in implantation. Development 1994;120:1071–83.

    Google Scholar 

  85. Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastoeyst implantation. Dev Genet 1997;21:102–8.

    Google Scholar 

  86. Giudice LC. Endometrial growth factors and proteins. Semin Reprod Endoerinol 1995;13:93–101.

    Google Scholar 

  87. Stewart CL. The role of leukemia inhibitory factor (LIF) and other eytokines in regulating implantation in mammals. Ann NY Aead Sci 1994;734:157–65.

    Google Scholar 

  88. Hilton DJ, Gough NM. Leukemia inhibitory factor: a biologie al perspeetive. J Cell Bioehem 1991;46:21–26.

    Google Scholar 

  89. Kojima K, Kanzaki H, Iwai M, et al. Expression of leukemia inhibitory factor in human endometrium and plaeenta. Biol Reprod 1994;50:882–87.

    Google Scholar 

  90. Birdsall MA, Hopkisson JF, Grant KE, Barlow DH, Mardon HJ. Expression of heparin-binding epidermal growth factor messenger RNA in the human endometrium. Mol Hum Reprod 1996;2:31–34.

    Google Scholar 

  91. Leaeh RE, Khalifa R, Ramirez ND, et al. Multiple roles for heparin-binding epidermal growth factor-like growth factor are suggested by its eell-specific expression during the human endometrial eycle and early plaeentation. J Clin Endoerinol Metab 1999;84:3355–63.

    Google Scholar 

  92. Raab G, Kover K, Paria BC, Dey SK, Ezzell RM, Klagsbrun M. Mouse preimplantation blastoeysts adhere to cells expressing the transmembrane form of heparin-binding EGF-like growth factor. Development 1996;122:637–45.

    Google Scholar 

  93. Tamada H, Higashiyama C, Takano H, Kawate N, Inaba T, Sawada T. The effeets of heparin-binding epidermal growth factor-like growth factor on preimplantation-embryo development and implantation in the rat. Life Sci 1999;64:1967–73.

    Google Scholar 

  94. Martin KL, Barlow DH, Sargent IL. Heparin-binding epidermal growth factor signifieantly improves human blastoeyst development and hatehing in serum-free medium. HumReprod 1998;13:1645–52.

    Google Scholar 

  95. Sargent IL, Martin KL, Barlow DH. The use of reeombinant growth factors to promote human embryo development in serum-free medium. Hum Reprod 1998; 13(Suppl. 4): 239–48.

    Google Scholar 

  96. Lessey BA, Gui Y, Yuan L, Appa Rao KBC, Mulholland J. Endometrial heparin binding epidermal growth factor (HB-EGF): A paraerine signal for uterine reeeptivity? J Clin Endoerinol Metab 2001 (submitted).

    Google Scholar 

  97. Benson GV, Lim HJ, Paria BC, Satokata I, Dey SK, Maas RL. Meehanisms of reduced fertility in Hoxa–10 mutant mice: uterine homeosis and loss of maternal Hoxa–10 expression. Development 1996;122:2687–96.

    Google Scholar 

  98. Satokata I, Benson G, Maas R. Sexually dimorphie sterility phenotypes in Hoxa–10 deficient mice. Nature 1995;374:460–63.

    Google Scholar 

  99. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox Axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 1997;57:1338–45.

    Google Scholar 

  100. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin luvest 1998;101:1379–84.

    Google Scholar 

  101. Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab 1999;84:1129–35.

    Google Scholar 

  102. Chakraborty I, Das SK, Wang J, Dey SK. Developmental expression of the cyclooxygenase–1 and cyclo-oxygenase–2 genesin the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J Mol Endocrinol 1996;16:107–22.

    Google Scholar 

  103. Jones RL, Kelly RW, Critchley HOD. Chemokine and cyclooxygenase–2 expression in human endometrium coincides with leukocyte accumulation. Hum Reprod 1997;12:1300–6.

    Google Scholar 

  104. Kim JJ, Wang J, Bambra C, Das SK, Dey SK, Fazleabas AT. Expression of cyclooxygenase–1 and–2 in the Baboon endometrium during the menstrual cycle and pregnancy. Endocrinology 1999;140:2672–78.

    Google Scholar 

  105. Robb L, Li RL, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nature Med 1998;4:303–8.

    Google Scholar 

  106. Psychoyos A, Nikas G. Uterine pinopodes as markers of uterine receptivity. Assist Reprod Rev 1994;4:26–32.

    Google Scholar 

  107. Psychoyos A, Mandon P. Etude de la surface de l’epithelium uterin au microscope electronique a balayage. CR Hebd Seances Acad Sci Paris 1971;272:2723–29.

    Google Scholar 

  108. Martel D, Frydman R, Sarantis L, Roche D, Psychoyos A. Scanning electron microscopy of the uterine luminal epithelium as a marker of the implantation window. In: Yoshinaga K, ed. Blastocyst implantation. Boston: Adams Publishing Group, 1993:225–30.

    Google Scholar 

  109. Bentin-Ley U, Sjögren A, Nilsson L, Hamberger L, Larsen JF, Horn T. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro. Hum Reprod 1999;14:515–20.

    Google Scholar 

  110. Anderson TL. Biomolecular markers for the window of uterine receptivity. In: Yoshinaga K, ed. Blastocyst implantation. Boston: Adams Publishing Group, 1993:219–24.

    Google Scholar 

  111. Carson DD, Tang J-P, Julian J. Heparan sulfate proteoglycan (perlecan) expression by mouse embryos during acquisition of attachment competence. Dev Biol 1993;155:97–106.

    Google Scholar 

  112. Campbell S, Swann HR, Scif MW, Kimber SJ, Aplin JD. Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod 1995;10:1571–78.

    Google Scholar 

  113. Sutherland AE, Calarco PG, Damsky CH. Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J Cell Biol 1988;106:1331–48.

    Google Scholar 

  114. Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 1993;119:1175–86.

    Google Scholar 

  115. Klentzeris LD, Bulmer JN, Trejdosiewicz LK, Morrison L, Cooke ID. Beta–1 integrin cell adhesion molecules in the endometrium of fertile and infertile women. Hum Reprod 1993;8:1223–30.

    Google Scholar 

  116. Appa Rao KBC, Lovely LP, Gui Y, Lessey BA. Over expression of endometrial androgen receptors in women with polycystic ovarian syndrome: an underlying cause of poor reproductive function? Biol Reprod 2001 (submitted).

    Google Scholar 

  117. Taskin O, Brown RW, Young DC, Poindexter AN, Wiehle RD. High doses of oral contraceptives do not alter endometrial α1 and αvβ3 integrins in the late implantation window. Fertil SteriI1994;61:850–55.

    Google Scholar 

  118. Raymond EG, Lovely LP, Chen-Mok M, Seppälä M, Kurman RJ, Lessey BA. Effect of the Yuzpe regimen of emergency contraception on markers of endometrial receptivity. Hum Reprod 2000;15:2351–55.

    Google Scholar 

  119. Somkuti SG, Sun JH, Yowell CW, Fritz MA, Lessey BA. The effect of oral contraceptive pills on markers of endometrial receptivity. Fertil Steril 1996;65:484–88.

    Google Scholar 

  120. Tabibzadeh S, Shea W, Lessey BA, Satyaswaroop PG. Aberrant expression of ebaf in endometria of patients with infertility. Mol Hum Reprod 1998;4:595–602.

    Google Scholar 

  121. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod 1999;14:1328–31.

    Google Scholar 

  122. Gui Y-T, Zhang J, Yuan L, Lessey BA. Regulation of Hoxa–10 and its expression in normal and abnormal endometrium. Mol Hum Reprod 1999;5:866–73.

    Google Scholar 

  123. Kolb BA, Paulson RJ. The luteal phase of cycles utilizing controlled ovarian hyperstimulation and the possible impact of this hyperstimulation on embryo implantation. Am J Obstet Gynecol 1997;176:1262–67.

    Google Scholar 

  124. Nikas G, Drakakis P, Loutradis D, et al. Uterine pinopodes as markers of the “nidation window” in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod 1995;10:1208–13.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Lessey, B.A. (2001). Biomarkers and the Assessment of Uterine Receptivity. In: Gardner, D.K., Lane, M. (eds) ART and the Human Blastocyst. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0149-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0149-3_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6540-5

  • Online ISBN: 978-1-4613-0149-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics