Skip to main content

Bayesian and Likelihood Inference for the Generalized Fieller—Creasy Problem

  • Chapter
Empirical Bayes and Likelihood Inference

Part of the book series: Lecture Notes in Statistics ((LNS,volume 148))

Abstract

The famous Fieller-Creasy problem involves inference about the ratio of two normal means. It is quite challenging from either a frequentist or a likelihood perspective. Bayesian analysis with noninformative priors usually provides ideal solutions for this problem. In this paper, we find a second order matching prior and a one at a time reference prior which work well for Fieller-Creasy problem in the more general setting of two location-scale models with smooth symmetric density functions. The properties of the posterior distributions are investigated for some particular cases including the normal, t, and the double exponential. The Bayesian procedure is implemented via Markov Chain Monte Carlo (MC 2). Our simulation study indicates that the second order matching priors, in general, perform better than the reference priors in terms of matching the target coverage probabilities in a frequentist sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Barnard, G.A. and D.A. Sprott (1983). The generalised problem of the Nile: Robust confidence sets for parametric functions. Ann. Statist. 11, 104–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O.E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika 70, 343–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O. and J.M. Bernardo (1989). Estimating a product of means: Bayesian analysis with reference prior. J. Amer. Statist. Assoc. 84, 200–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O. and J.M. Bernardo (1992). On the development of reference priors (with discussion). In J. Bernardo, J. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics IV, pp. 35–60. Oxford University Press.

    Google Scholar 

  • Berger, J.O., B. Liseo, and R. Wolpert (1999). Integrated likelihood methods for eliminating nuisance parameters. Statist. Sci. 14, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernardo, J.M. (1977). Inferences about the ratio of normal means: A. Bayesian approach to the Fieller-Creasy problem. In Recent Developments in Statistics, Proceedings of the 1976 European Meeting of Statisticians, pp. 345–350.

    Google Scholar 

  • Bernardo, J.M. (1979). Reference posterior distributions for Bayesian inference (with discussion). J. Roy. Statist. Soc. Ser. B 41, 113–147.

    MathSciNet  MATH  Google Scholar 

  • Carlin, B.P. and T.A. Louis (2000). Bayes and Empirical Bayes Methods for Data Analysis. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Chib, S. and E. Greenberg (1995). Understanding the Metropolis-Hastings algorithm. Amer. Statist. 49, 327–335.

    Google Scholar 

  • Cox, D.R. and N. Reid (1987). Parameter orthogonality and approximate conditional inference (with discussion). J. Roy. Statist. Soc. Ser. B 49, 1–39.

    MathSciNet  MATH  Google Scholar 

  • Creasy, M.A. (1954). Limits for the ratio of means (with discussion). J. Roy. Statist. Soc. Ser. B 16, 186–194.

    MathSciNet  MATH  Google Scholar 

  • Datta, G.S. and M. Ghosh (1995). Some remarks on noninformative priors. J. Amer. Statist. Assoc. 90, 1357–1363.

    Article  MathSciNet  MATH  Google Scholar 

  • Datta, G.S. and M. Ghosh (1996). On the invariance of noninformative priors. Ann. Statist. 24, 141–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Fieller, E.C. (1954). Some problems in interval estimation (with discussion). J. Roy. Statist. Soc. Ser. B 16, 175–185.

    MathSciNet  MATH  Google Scholar 

  • Ghosh, M. and R. Mukerjee (1998). Recent developments on probability matching priors. In S. Ahmed, M. Ahsanullah, and B. Sinha (Eds.), Applied Statistical Science III. Nonparametric Statistics and Related Topics, pp. 227–252. Nova Science Publ., Inc.

    Google Scholar 

  • Gleser, L.J. and J.T. Hwang (1987). The nonexistence of 100(1 — α)% confidence sets of finite expected diameters in error-in-variable and related models. Ann. Statist. 15, 1351–1362.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, R.A. (1970). Asymptotic expansions associated with posterior distributions. Ann. Math. Statist. 41, 851–864.

    Article  MathSciNet  MATH  Google Scholar 

  • Kappenman, R.F., S. Geisser, and C.F. Antle (1970). Bayesian and fiducial solutions to the Fieller-Creasy problem. J. Roy. Statist. Soc. Ser. B 32, 331–340.

    MathSciNet  Google Scholar 

  • Liseo, B. (1993). Elimination of nuisance parameters with reference priors. Biometrika 80, 295–304.

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh, P. and R. Tibshirani (1990). A simple method for the adjustment of profile likelihood. J. Roy. Statist. Soc. Ser. B 52, 325–344.

    MathSciNet  MATH  Google Scholar 

  • Mendoza, M. (1996). A note on the confidence probabilities of reference priors for the calibration model. preprint.

    Google Scholar 

  • Mukerjee, R. and D.K. Dey (1993). Frequentist validity of posterior quan-tiles in the presence of a nuisance parameter: Higher order asymptotics. Biometrika 80, 499–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Mukerjee, R. and M. Ghosh (1997). Second order probability matching priors. Biometrika 84, 970–975.

    Article  MathSciNet  MATH  Google Scholar 

  • Phillipe, A. and C.P. Robert (1994). A note on the confidence properties of reference priors for the calibration model, preprint.

    Google Scholar 

  • Reid, N. (1995). Likelihood and Bayesian approximation methods (with discussion). In J. Bernardo, J. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics, Volume 5, pp. 611–618. Oxford University Press.

    Google Scholar 

  • Sendra, M. (1982). Reference posterior distribution for the Fieller-Creasy problem. Test 33, 55–72.

    MathSciNet  MATH  Google Scholar 

  • Stephens, D.A. and A.F.M. Smith (1992). Sampling-resampling techniques for the computation of posterior densities in normal means problems. Test 1, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani, R.J. (1989). Non-informative priors for one parameter of many. Biometrika 76, 604–608.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yin, M., Ghosh, M. (2001). Bayesian and Likelihood Inference for the Generalized Fieller—Creasy Problem. In: Ahmed, S.E., Reid, N. (eds) Empirical Bayes and Likelihood Inference. Lecture Notes in Statistics, vol 148. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0141-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0141-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95018-1

  • Online ISBN: 978-1-4613-0141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics