Skip to main content

Genome Plasticity and Chromosome Evolution

  • Chapter
Human Chromosomes
  • 140k Accesses

Abstract

All life as we know it traces back to a single common ancestor. The diversity of living organisms could not have been achieved in the 3–4 billion years they have existed on earth without a high level of genome plasticity. Here we will explore some of the aspects of this plasticity that are most relevant to understanding the behavior of human chromosomes. The common origin of all life forms was strongly supported by Charles Darwin, whose theory of evolution by natural selection provided a powerful explanation for the enormous diversity of living organisms. Genetics and molecular biology have confirmed this unity, demonstrating that all organisms store their genetic information in DNA or RNA and use a virtually universal genetic code for translating this information into protein sequences. Genes, too, show a remarkable degree of conservatism. As an example, over 70 human genes are already known that can function in yeast, substituting for the corresponding defective yeast gene (National Center for Biotechnology Information, http://www.ncbi.nim.nih.gov/Bassett/cerevisiae/index.html). A recent study in Drosophila used saturation mutagenesis of a 67-kb region to identify 12 new expressed genes. Nearly all these genes had close relatives in the human and round worm (Caenorhabditis elecjans) databases. Half were present in the yeast (Sacchiromyces cerevisiae) database, and a few were even present in the bacterial databases (Maleszka et al., 1998). This level of sequence conservation is remarkable, especially since warm-blooded birds and mammals have evolved a rather different genome organization, marked by increased heterogeneity in base composition, with highly GC-rich and GC-poor isochores and attendant changes in codon usage (Bernardi, 1995, see also Chapter 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agulnik AI, Zharkikh A, Boettger-Tong H, et al. (1998) Evolution of the DAZ gene family suggests that Y-linked DAZ plays little, or a limited, role in spermatogenesis but underlines a recent African origin for human populations. Hum Mol Genet 7:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (1995) The human genome: organization and evolutionary history. Annu Rev Genet 29:445–476

    Article  PubMed  CAS  Google Scholar 

  • Clémente LC, Ponsa M, Garcia M, et al. (1990) Evolution of the Simiiformes and the phylogeny of human chromosomes. Hum Genet 84: 493–506

    Article  PubMed  Google Scholar 

  • Cooke HJ, Elliott DJ (1997) RNA-binding proteins and human male fertility. Trends Genet 13:87–89

    Article  PubMed  CAS  Google Scholar 

  • Desouza AT, Yamada T, Mills JJ, et al. (1997) Imprinted genes in liver carcinogenesis. FASEB J 11:60–67

    CAS  Google Scholar 

  • Doolittle RF (1998) Microbial genomes opened up. Nature 392:339–342

    Article  PubMed  CAS  Google Scholar 

  • Dorit RL, Akashi H, Gilbert W (1995) Absence of polymorphism at the ZFY locus in the human Y chromosome. Science 268:1 183–1 185

    Article  CAS  Google Scholar 

  • Dorit RL, Schoenbach L, Gilbert W (1990) How big is the universe of exons? Science 250:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Drummond, JT, Genschel J, Wolf E, et al. (1997) DHFF/MSHs amplification in methotrexate-resistant cells alters the hMutSoc/Hmutsβ ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci USA 94:10144–10149

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny for Microcebus murinus (Prosimian) to man. Hum Genet 48:251–314

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J, Sabatier L, et al. (1986) Inversions in evolution of man and closely related species. Ann Génét 29:195–202

    PubMed  CAS  Google Scholar 

  • Ehrlich J, Sankoff D, Nadeau JH (1997) Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289–296

    PubMed  CAS  Google Scholar 

  • Eichler EE, Budarf ML, Rocchi M, et al. (1997) Interchromosomal duplications of the adrenoleukodystrophy locus: a phenomenon of pericentromeric plasticity. Hum Mol Genet 6:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald J, Wilcox SA, Graves JAM (1996) A eutherian X-linked gene, PDHAl, is autosomal in marsupials: a model for the evolution of a second, testis-specific variant in eutherian mammals. Genomics 18:636–642

    Article  Google Scholar 

  • Gläser B, Grützner F, Taylor K, et al. (1997) Comparative mapping of Xp22 genes in hominoids-evolutionary linear instability of their Y homologues. Chrom Res 5:16

    Google Scholar 

  • Graves JAM, Disteche CM, Toder R (1998) Gene dosage in the evolution and function of mammalian sex chromosomes. Cytogenet Cell Genet 80:94–103

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Schmid M (1987) Paracentric inversion in human chromosome 7 as a graphic example of reverse chromosome mutation. Hum Evol 2:321–327

    Article  Google Scholar 

  • Jackson MS, Rocchi M, Thompson G, et al. (1999). Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications and unstable sequences with homologies to telomeric and other centromeric locations. Hum Mol Genet 8:205–215

    Article  PubMed  CAS  Google Scholar 

  • Kelley MJ, Peck M, Seuanez HN, et al. (1992) Emergence of the keratinocyte growth factor multigene family during the great ape radiation. Proc Natl Acad Sci USA 89:9287–9291

    Article  PubMed  CAS  Google Scholar 

  • Lambson B, Afara N, Mitchell M, et al. (1992) Evolution of DNA sequence homologies between the sex chromosomes in primate species. Genomics 14:1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Lundquist E, Johansson I, Ingelman-Sundberg M (1999) Genetic mechanisms for duplication and multiduplication of the CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226:327–338

    Article  Google Scholar 

  • Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417_422

    Article  PubMed  Google Scholar 

  • Maleszka R, Couet HG de, Miklos GLK (1998) Data transferability from model organisms to human beings: Insights from the functional genomics of the flightless region of Drosophila. Proc Natl Acad Sci USA 95: 3731–3736

    Article  PubMed  CAS  Google Scholar 

  • Mitchell MJ, Wilcox SA, Watson JM, et al. (1998) The origin and loss of the ubiquitin activating enzyme gene on the mammalian Y chromosome. Hum Mol Genet 7:429–434

    Article  PubMed  CAS  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by Ll retro-transposition. Science 283:1530–1534

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH, Sankoff D (1997) Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147:1259–1266

    PubMed  CAS  Google Scholar 

  • Nickerson E, Nelson DL (1998) Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50:368–372

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SJ, Wienberg J, Lyons LA (1997) Comparative genomics: lessons from cats. Trends Genet 13:393–399

    Article  CAS  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springerverlag, New York.

    Book  Google Scholar 

  • O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  CAS  Google Scholar 

  • Perry J, Feather S, Smith A, et al. (1998) The human FXY gene is located within Xp22.3: implications for evolution of the mammalian X chromosome. Hum Mol Genet 7:299–305

    Article  PubMed  CAS  Google Scholar 

  • Puech A, Saint-Jore B, Funke B, et al. (1997) Comparative mapping of the human 22ql 1 chromosomal region and the orthologous region in mice reveals complex changes in gene organization. Proc Natl Acad Sci USA 94: 14608–14613

    Article  PubMed  CAS  Google Scholar 

  • Rettenberger G, Klett Ch, Zechner U, et al. (1995) ZOO-FISH analyses: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chrom Res 3:479–486

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Dutrillaux B (1998) Origin of human chromosome 21 and its consequences: a 50-million-year-old story. Chrom Res 6:263–268

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A, Chan DC, Brown LC, et al. (1998) Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE-LINE recombination. Hum Mol Genet 7:1–11

    Article  PubMed  CAS  Google Scholar 

  • Small K, Iber J, Warren ST (1997) Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat Genet 16:96–99

    Article  PubMed  CAS  Google Scholar 

  • Strissel PL, Dann HA, Pomykala HM, et al. (1998) Scaffold-associated regions in the human type I interferon gene cluster on the short arm of chromosome 9. Genomics 47:217–229

    Article  PubMed  CAS  Google Scholar 

  • The C elecjans Sequencing Consortium (1998) Genome sequence of the nematode C ekgans: a platform for investigating biology. Science 282:2012

    Article  Google Scholar 

  • Toder R, Xia Y, Bausch E (1998) Interspecies comparative genome hybridization and interspecies representational difference analysis reveal gross DNA differences between humans and great apes. Chrom Res 6:487–494

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ, Friedman C, Martin-Gallardo A, et al. (1998) Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 7:13–26

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Corish P, Burms E (1998) Neocentromeres, the Y chromosome and centromere evolution. Chrom Res 6:65–71

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Jauch A, Stanyon R, et al. (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8:347–350

    Article  PubMed  CAS  Google Scholar 

  • Wilcox SA, Watson JM, Spencer JA, et al. (1996) Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement. Genomics 35:66–70

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). Genome Plasticity and Chromosome Evolution. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics