Skip to main content

DNA and Gene Amplification

  • Chapter
Human Chromosomes
  • 140k Accesses

Abstract

Double minutes (DMs) and homogeneously stained regions (HSRs) provide good examples of phenomena that were originally regarded as cytological oddities but have turned out to be expressions of a fundamental process, called DNA or gene amplification. They arise almost exclusively in transformed and malignant cells. DMs were first described in the 1960s. They occur in most types of solid tumors and many leukemias (Chapter 27). (1976) first described HSRs in human neuroblastoma cell lines and methotrexate-resistant hamster cell lines. HSRs are rare in human tumors but more common in cultured tumor cell lines (Benner et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amler LC, Shibasaki Y, Savelyeva L, et al. (1992) Amplification of the N-myc gene in human neuroblastomas: tandemly repeated amplicons within homogeneously staining regions on different chromosomes with the retention of single copy gene at the resident site. Mutat Res 276:291–297

    Article  PubMed  CAS  Google Scholar 

  • Benner SE, Wahl GM, Von Hoff DD (1991) Double minute chromosomes and homogeneously stained regions in tumors taken directly from patients versus in vitro human tumor cell lines. Anticancer Drugs 2:11–25

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, Spengler BA (1976) Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science 191:185–187

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, Ross RA, Shanske S, et al. (1980) Human neuroblastoma cytogenetics: search for significance of homogeneously stained regions and double minute chromosomes. In: Evans AE (ed) Advances in Meuroblastoma research. Raver, New York, pp 81–96

    Google Scholar 

  • Cantor CR, Smith CL, Mathew MK (1988) Pulsed-field gel electrophoresis of very large DNA molecules. Annu Rev Biophys Biophys Chem 17:287–304

    Article  PubMed  CAS  Google Scholar 

  • Coquelle A, Pipiras E, Toledo F, et al. (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89:215–225

    Article  PubMed  CAS  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre C, et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    PubMed  CAS  Google Scholar 

  • Cowell JK (1982) Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu Rev Genet 16:21–59

    Article  PubMed  CAS  Google Scholar 

  • Cowell JK, Miller OJ (1983) Occurrence and evolution of homogeneously staining regions may be due to breakage-fusion-bridge cycles following telomere loss. Chromosoma 88:216–221

    Article  PubMed  CAS  Google Scholar 

  • de Lange T, Shiue L, Myers RM, et al. (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527

    PubMed  Google Scholar 

  • Fakharzadeh SS, Rosenbloom-Vos L, Murphy M, et al. (1993) Structure and organization of amplified DNA in double minutes containing the mdm2 oncogene. Genomics 15:283–290

    Article  PubMed  CAS  Google Scholar 

  • Ford M, Fried M (1986) Large inverted duplications are associated with gene amplification. Cell 45:425–430

    Article  PubMed  CAS  Google Scholar 

  • Foureman P, Winfield JA, Hahn PJ (1998) Chromosome breakpoints near CpG islands in double minutes. Gene 218:121–128

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Schmid M (1988) Analysis of double minutes and double minute-like chromatin in human and murine tumor cells using antikinetochore antibodies. Cancer Genet Cytogenet 30:73–82

    Article  PubMed  CAS  Google Scholar 

  • Holden JJA, Hough MR, Reimer DL, et al. (1987) Evidence for unequal crossing-over as the mechanism for amplification of some homogeneously staining regions. Cancer Genet Cytogenet 29:139–149

    Article  PubMed  CAS  Google Scholar 

  • Jack EM, Waters JJ, Harrison CJ (1987) A scanning electron microscopy study of double minutes from a human tumour cell line. Cytogenet Cell Genet 44:49–52

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Lundquist E, Bertilsson L, et al. (1993) Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90:11825–11829

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi O-P, Piper J, et al. (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 91:2156–2160

    Article  PubMed  CAS  Google Scholar 

  • Kao-Shan CS, Fine RL, Whang-Peng J, et al. (1987) Increased fragile sites and sister chromatid exchanges in bone marrow and peripheral blood of young cigarette smokers. Cancer Res 47:6278–6282

    PubMed  CAS  Google Scholar 

  • Lin CC, Meyne J, Sasi R, et al. (1990) Apparent lack of telomere sequences on double minute chromosomes. Cancer Genet Cytogenet 48:271–274

    Article  PubMed  CAS  Google Scholar 

  • Livingstone LR, White A, Sprouse J, et al. (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935

    Article  PubMed  CAS  Google Scholar 

  • Miller DA, Breg WR, Warburton D, et al. (1978) Regulation of rRNA gene expression in a human familial 14p+ marker chromosome. Hum Genet 43:289–297

    Article  PubMed  CAS  Google Scholar 

  • Pauletti G, Lae E, Attardi G (1990) Early appearance and long-term persistence of the submicroscopic extrachromosomal elements (amplisomes) containing the amplified DHFR genes in human cell lines. Proc Nat Acad Sci USA 87:2955–2959

    Article  PubMed  CAS  Google Scholar 

  • Pedeutour F, Suijkerbuijk RF, Forus A, et al. (1994) Complex composition and co-amplification of SAS and MDM2 in ring and giant marker chromosomes in well-differentiated liposarcoma. Genes Chrom Cancer 10:85–94

    Article  PubMed  CAS  Google Scholar 

  • Pitti RM, Marsters SA, Lawrence DA, et al. (1998) Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Prody CA, Dreyfus P, Zamir R, et al. (1989) De novo amplification within a “silent” human Cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides. Proc Natl Acad Sci USA 86:690–694

    Article  PubMed  CAS  Google Scholar 

  • Razin SV, Gromova H, Iarovian OV (1995) Specificity and functional significance of DNA interaction with the nuclear matrix: new approaches to clarify the old question. Int Rev Cytol 162B:405–408

    PubMed  CAS  Google Scholar 

  • Roberts JM, Buck LB, Axel R (1983) A structure for amplified DNA. Cell 33: 53–63

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Nanda I, Steinlein C, et al. (1994) Amplification of (GACA)n simple repeats in an exceptional 14p+ marker chromosome. Hum Genet 93: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Sen P, Mulac-Jericevic B, et al. (1994) Microdissected double minute DNA detects variable patterns of chromosomal localization and multiple abundantly expressed transcripts in normal and leukemic cells. Genomics 19:542–555

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Itoh N, Utiyama H (1998) Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 140:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Smeets DFCM, Moog U, Weemaes CMR, et al. (1994) ICF syndrome: a new case and review of the literature. Hum Genet 94:240–246

    Article  PubMed  CAS  Google Scholar 

  • Soder AI, Hoare SF, Muir S, et al. (1997) Amplification, increased dosage and in situ expression of the telomerase RNA gene in human cancer. Oncogene 14:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tlsty TD, White A, Sanchez J (1992) Suppression of gene amplification in human cell hybrids. Science 255:1425–1427

    Article  PubMed  CAS  Google Scholar 

  • Toledo F, Le Roscouet D, Buttin G, et al. (1992) Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J 11:2665–2673

    PubMed  CAS  Google Scholar 

  • Von Hoff DD, Needham-Van Devanter J, Yucel J, et al. (1988) Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci USA 85:4804–4808

    Article  Google Scholar 

  • Von Hoff DD, Forseth B, Clare CN, et al. (1990) Double minutes arise from circular extrachromosomal DNA intermediates which integrate into chromosomal sites in human HL-60 leukemia cells. J Clin Invest 85: 1887–1895

    Article  Google Scholar 

  • Windle BE, Wahl GM (1992) Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analysis of very early events. Mutat Res 276:199–224

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Tainsky MA, Bischoff FZ, et al. (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). DNA and Gene Amplification. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics