Skip to main content

Meiotic Abnormalities: Abnormal Numbers of Chromosomes

  • Chapter
Human Chromosomes
  • 140k Accesses

Abstract

A neuploidy is the loss or gain of individual chromosomes. It can be the result of nondisjunction in a premeiotic mitotic division in the germline of either parent, a first or second meiotic division in either parent, or an early embryonic mitotic (postzygotic) division in the affected individual. Nondisjunction refers to any process that causes two homologous chromosomes to go to the same pole instead of segregating to opposite poles. Some meiotic aberrations leading to nondisjunction are described in Table 11.1 and illustrated in Fig. 11.1. When homologous chromosomes fail to pair or fail to form chiasmata the homologues fall apart and appear as univalents in diplotene. Univalents may drift at random to the two poles in the first division and divide regularly in the second. Alternatively, they may divide mitotically in anaphase I and in anaphase II drift at random to opposite poles or fail to go to either pole, rarely, one may misdivide at the centromere, just as univalents might in the first meiotic division. Only a small segment of the XY bivalent forms a synaptonemal complex in which crossing over takes place (Fig. 17.2). Thus, the X and Y remain as univalents much more often than even the smallest autosome pair. Frequencies of univalents vary among different individuals, but the mean frequency of unpaired sex chromosomes in the male is about 11 per cent (Laurie and Hultén, 1985). Multiple aneuploidy of one or several chromosomes is very uncommon, except for the sex chromosomes. Polyploidy (triploidy or tetraploidy) is the gain of whole sets of chromosomes.

Table 11.1. Principal Meiotic Events and Outcomes of Their Failures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell RR (1991) Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet 86:383–387

    Article  PubMed  CAS  Google Scholar 

  • Angell RR (1995) Meiosis I in human oocytes. Cytogenet Cell Genet 69:266–272

    Article  PubMed  CAS  Google Scholar 

  • Angell RR (1997) First-meiotic-division nondisjunction in human oocytes. Am J Hum Genet 61:23–32

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis SE, Avramopolous D, Blouin J-L, et al. (1993) Mitotic errors in somatic cells cause trisomy 21 in 4.5% of cases and are not associated with advanced maternal age. Nat Genet 3:146–150

    Article  PubMed  CAS  Google Scholar 

  • Awa AA, Honda T, Neriishi S, et al. (1987) Cytogenetic study of the offspring of atomic bomb survivors, Hiroshima and Nagasaki. In: Obe G, Basier A (eds) Cytogenetics. Springer, Berlin/Heidelberg, pp 166–183

    Chapter  Google Scholar 

  • Bernat RL, Delannoy MR, Rothfield NF, et al. (1991) Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell 66:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Boue A, Boue J, Gropp A (1985) Cytogenetics of pregnancy wastage. In: Harris H, Hirschhorn K (eds) Advances in human genetics, Vol 14. Plenum, New York, pp 1–57

    Google Scholar 

  • Dailey T, Dale B, Cohen J, et al. (1996) Association between nondisjunction and maternal age in meiosis II oocytes. Am J Hum Genet 59:176–184

    PubMed  CAS  Google Scholar 

  • Delhanty JDA, Harper JC, Ao A, et al. (1997) Multicolor FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 99:755–760

    Article  PubMed  CAS  Google Scholar 

  • Fisher JM, Harvey JF, Morton NE, et al. (1995) Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am J Hum Genet 56:669–675

    PubMed  CAS  Google Scholar 

  • Fitzpatrick DR, Boyd E (1989) Recurrences of trisomy 18 and trisomy 13 after trisomy 21. Hum Genet 82:301

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Abruzzo MA, Millie EA, et al. (1995) Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol Genet 4:2227–2232

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Engel W, Schmid M (1997) Analysis of structural and numerical abnormalities in sperm of normal men and carriers of constitutional chromosome aberrations. A review. Hum Genet 100:1–21

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ, Pettay D, May K, et al. (1990) Analysis of non-disjunction in sex chromosome tetrasomy and pentasomy. Hum Genet 85:648–650

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ, Merrill M, Adkins K, et al. (1995) Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am J Hum Genet 57:867–874

    PubMed  CAS  Google Scholar 

  • Hassold TJ, Jacobs PA (1984) Trisomy in man. Annu Rev Genet 18:69–97

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ, Jacobs PA, Kline J, et al. (1980) Effect of maternal age on autosomal trisomies. Ann Hum Genet 44:29–36

    Article  PubMed  CAS  Google Scholar 

  • Hultén M (1974) Chiasma distribution at diakinesis in the normal human male. Hereditas 76:55–78

    Article  PubMed  Google Scholar 

  • Jabs EW, Tuck-Muller CM, Anhalt GJ, et al. (1993) Cytogenetic survey in systemic sclerosis: correlation of aneuploidy with the presence of anticentromeric antibodies. Cytogenet Cell Genet 63:169–175

    Article  PubMed  CAS  Google Scholar 

  • Jacobs PA, Hassold TJ (1995) The origin of numerical chromosome abnormalities. Adv Genet 33:101–133

    Article  PubMed  CAS  Google Scholar 

  • Jacobs PA, Angell RR, Buchanan IM, et al. (1978) The origin of human triploids. Ann Hum Genet 42:49–57

    Article  PubMed  CAS  Google Scholar 

  • Kajii T, Kawai T, Takumi T, et al. (1998) Mosaic variegated aneuploidy with multiple congenital abnormalities: homozygosity for total premature chromatid separation trait. Am J Med Genet 78:245–249

    Article  PubMed  CAS  Google Scholar 

  • Kamiguchi Y, Rosenbusch B, Sterizk K, et al. (1993) Chromosome analysis of unfertilized human oocytes prepared by a gradual fixation-air drying method. Hum Genet 90:533–541

    Article  PubMed  CAS  Google Scholar 

  • Lamb NE, Freeman SB, Savage-Austin A, et al. (1996) Susceptible chiasma configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14:400–405

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Hultén MA (1985) Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann Hum Genet 49:189–201

    Article  PubMed  CAS  Google Scholar 

  • Lim AST, Ho ATN, Tsakok MFH (1995) Chromosomes of oocytes failing in-vitro fertilization. Hum Reprod 10:2570–2575

    PubMed  CAS  Google Scholar 

  • Mathur A, Stekol L, Schatz D, et al. (1991) The parental origin of the single X chromosome in Turner syndrome: lack of correlation with parental age or clinical phenotype. Am J Hum Genet 48:682–686

    PubMed  CAS  Google Scholar 

  • Munné S, Dailey T, Sultan KM, et al. (1995) The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod 10:1015–1021

    Google Scholar 

  • Olson SB, Magenis RE (1988) Preferred paternal origin of de novo structural chromosome rearrangements. In: Daniel A (ed) The cytogenetics of mammalian autosomal rearrangements. Liss, New York, pp 583–599

    Google Scholar 

  • Patau K (1963) The origin of chromosomal abnormalities. Pathol Biol 11: 1163–1170

    PubMed  CAS  Google Scholar 

  • Pellestor F, Girardet A, Coignet L, et al. (1996) Assessment of aneuploidy for chromosomes 8, 9, 13, 16, and 21 in human sperm by using primed in situ labeling techniques. Am J Hum Genet 58:797–802

    PubMed  CAS  Google Scholar 

  • Reddy KS (1997) Double trisomy and spontaneous abortions. Hum Genet 101:339–345

    Article  PubMed  CAS  Google Scholar 

  • Robinson WP, Bernasconi F, Mutirangura A, et al. (1993) Nondisjunction of chromosome 15: origin and recombination. Am J Hum Genet 53: 740–751

    PubMed  CAS  Google Scholar 

  • Robinson WP, Kuchinka BD, Bernasconi F, et al. (1998) Maternal meiosis I nondisjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Hum Mol Genet 7: 1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Rudak E, Jacobs PA, Yanagimachi R (1978) Direct analysis of the chromosome constitution of human spermatozoa. Nature 274:911–913

    Article  PubMed  CAS  Google Scholar 

  • Sanger R, Tippett P, Gavin J (1971) Xg groups and sex abnormalities in people of northern European ancestry. J Med Genet 8:417–426

    Article  PubMed  CAS  Google Scholar 

  • Savage AR, Petersen MB, Pettay D, et al. (1998) Elucidating the mechanisms of paternal non-disjunction of chromosome 21 in humans. Hum Mol Genet 7:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Sherman SL, Petersen MB, Freeman SB (1994) Nondisjunction of chromosome 21 in maternal meiosis I: evidence for a maternal age-dependent mechanism involving reduced recombination. Hum Mol Genet 3:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Surti U, Szulman AK, Wagner K, et al. (1986) Tetraploid partial hydatidiform moles: two cases with a triple paternal contribution and a 92,XXXY karyotype. Hum Genet 72:15–21

    Article  PubMed  CAS  Google Scholar 

  • Tease C (1988) Radiation-induced aneuploidy in germ cells of female mammals. In: Vig BK, Sandberg AA (eds) Aneuploidy, Part B: Induction and test systems. Liss, New York, pp 141–157

    Google Scholar 

  • Watt JL, Templeton AA, Messinis SI, et al. (1987) Trisomy 1 in an eight cell human preembryo. J Med Genet 24:60–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). Meiotic Abnormalities: Abnormal Numbers of Chromosomes. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics