Skip to main content

Spatiotemporal Patterning in Models of Juxtacrine Intercellular Signalling with Feedback

  • Conference paper
Mathematical Models for Biological Pattern Formation

Abstract

Juxtacrine signalling is the class of intercellular communication mediated by ligands and receptors that are both anchored in the cell membrane. Two particularly well documented examples of such signalling pathways are the Delta-Notch and tgf α-egf-r interactions. In this review, we discuss mathematical models for juxtacrine signalling, focussing on these two specific examples. We discuss the various model formulations that have been used, and consider gradient, travelling front, and spatial pattern type solutions. We show that juxtacrine mechanisms can explain a wide range of observed behaviours in each of these categories, in a manner that is genuinely different from that in traditional diffusion-based models for intercellular signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Artavanis-Tsakonas, K. Matsuno and M. Fortini. Notch signaling. Science, 268:225–232, 1995.

    Article  Google Scholar 

  2. J.D. Axelrod, K. Matsuno, S. Artavanis-Tsakonas and N. Perrimon. Interaction between wingless and Notch signalling pathways mediated by dishevelled. Science, 271:1826–1832, 1996.

    Article  Google Scholar 

  3. J.D. Axelrod, J.R. Miller, J.M. Shulman, R.T. Moon and N. Perrimon. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev., 12:2610–2622, 1998.

    Article  Google Scholar 

  4. A. Babloyantz. Self-organization phenomena resulting from cell-cell contact. J. Theor. Biol, 68:551–561, 1977.

    Article  Google Scholar 

  5. Y. Barrandon and H. Green. Cell migration is essential for sustained growth of keratinocyte colonies: The roles of Transforming Growth Factor α and epidermal growth factor. Cell, 50:1131–1137, 1987.

    Article  Google Scholar 

  6. S.E. Bates, E.M. Valverius, B.W. Ennis, D.A. Bronzert, J.P. Sheridan, M.R. Stampfer, J. Mendelsohn, M.E. Lippman and R.B. Dickson. Expression of the transforming growth factor-alpha/epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinology, 129:596–607, 1990.

    Article  Google Scholar 

  7. B.E. Bejcek, D.Y. Li and T.F. Deuel. Transformation of v-sis occurs by an internal autoactivation mechanism. Science, 245:1496–1499, 1989.

    Article  Google Scholar 

  8. M.W. Bosenberg and J. Massagué. Juxtacrine cell signalling molecules. Curr. Opin. Cell Biol., 5:832–838, 1993.

    Article  Google Scholar 

  9. R. Brachmann, P.B. Lindquist, M. Nagashima, W. Kohr, T. Lipari, M. Napier and R. Derynck. Transmembrane TGF-α precursors activate EGF/TGF-α receptors. Cell, 56:691–700, 1989.

    Article  Google Scholar 

  10. J.A. Campos-Ortega. Early neurogenesis in Drosophila melanogaster. In: The Development of Drosophila melanogaster (M Bate and A Martinez Arias, eds) Vol. 2, pp. 1091–1129. New York: Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  11. S. Christensen, V. Kodoyianni, M. Bosenberg, L. Friedman and J. Kimble. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis ele-gans, is homologous to human CBF1 and Drosophila Su(H). Development, 122:1373–1383, 1996.

    Google Scholar 

  12. F. Ciardiello, N. Kim, D.S. Liscia, C. Bianco, R. Lidereau, G. Merlo, R. Callahan, J. Greiner, C. Szpak, W. Kidwell, J. Schlom and D.S. Salomon. Messenger-RNA expression of transforming growth factor α in human breast carcinomas and its activity in effusions of breast cancer patients. J. Natl. Cancer Inst., 81:1165–1171, 1989.

    Article  Google Scholar 

  13. D.W. Cohen, R. Simak, W.R. Fair, J. Melamed, H.I. Scher, and C. Cordon-Cardo. Expression of transforming growth factor a and the epidermal growth factor receptor in human prostate tissues. J. Urol., 152:2120–2124, 1994.

    Google Scholar 

  14. J.F. de Celis and S. Bray. Feedback mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development, 124:3241–3251, 1997.

    Google Scholar 

  15. J.F. de Celis, S. Bray and A. Garcia-Bellido. Notch signalling regulates vein-let expression and establishes boundaries between veins and interveins in the Drosophila wing. Development, 124:1919–1928, 1997

    Google Scholar 

  16. J.R. Collier, N.A.M. Monk, P.K. Maini and J.H. Lewis. Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling. J. theor. Biol., 183:429–446, 1996.

    Article  Google Scholar 

  17. A.J.L. Clark, S. Ishii, N. Richert, G.T. Merlino and I. Pastan. Epidermal growth factor regulates the expression of its own receptor. Proc. Natl. Acad. Sci. USA, 82:8374–8378, 1985.

    Article  Google Scholar 

  18. R.J. Coffey, R. Derynck, J.N. Wilcox, T.S. Bringman, A.S. Goustin, H.L. Moses and M.R. Pittelkow. Production and auto-induction of transforming growth Factor-α in human keratinocytes. Nature, 328:817–820, 1987.

    Article  Google Scholar 

  19. G.C. Cruywagen, P.K. Maini and J.D. Murray. Sequential pattern formation in a model for skin morphogenesis. IMA J. Math. Appl. Med. Biol., 9:227–248, 1992.

    Article  MATH  Google Scholar 

  20. S. Davis, N.W. Gale, T.H. Aldrich, P.C. Maisonpierre, V. Lhotak, T. Pawson, M. Goldfarb and G.D. Yancopoulos. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science, 266:816–819, 1994.

    Article  Google Scholar 

  21. J.E. de Larco and G.J. Todaro. Growth factors from murine sarcoma virus transformed cells. Proc. Natl. Acad. Sci. USA, 75:4001–4005, 1978.

    Article  Google Scholar 

  22. R. Derynck, D.V. Goeddel, A. Ullrich, J.U. Gutterman, R.D. Williams, T.S. Bringman and W.H. Berger. Synthesis of messenger RNAs for transforming growth factors α and β and the epidermal growth factor receptor by human tumors. Cancer Res., 47:707–712, 1987.

    Google Scholar 

  23. R. Derynck. Transforming growth factor α. Cell, 54:593–595, 1988.

    Article  Google Scholar 

  24. H.S. Earp, K.S. Austin, J. Blaisdell, R.A. Rubin, K.G. Nelson, L.W. Lee and J.W. Grisham. Epidermal growth factor (EGF) stimulates egf receptor synthesis. J. Biol. Chem., 261:4777–4780, 1986.

    Google Scholar 

  25. H.S. Earp, J.R. Hepler, L.A. Petch, A. Miller, A.R. Berry, J. Harris, V.W. Raymond, B.K. Mccune, L.W. Lee, J.W. Grisham and T.K. Harden. Epidermal growth factor (EGF) and hormones stimulate phosphoinositide hydrolysis and increase EGF receptor protein synthesis and mRNA levels in rat liver epithelial cells. J. Biol. Chem., 263:13868–13874, 1988.

    Google Scholar 

  26. S. Eaton. Planar polarization of Drosophila and vertebrate epithelia. Curr. Opin. Cell Biol., 9:860–866, 1997.

    Article  Google Scholar 

  27. G.B. Ermentrout and L. Edelstein-Keshet. Cellular automata approaches to biological modeling. J. Theor. Biol., 160:97–133, 1993.

    Article  Google Scholar 

  28. F. Fagotto and B. Gumbiner. Cell contact-dependent signaling. Dev. Biol., 180:445–454, 1996.

    Article  Google Scholar 

  29. R.G. Fehon, P.J. Kooh, I. Rebay, C.L. Regan, T. Xu, M.A.T. Muskav-Itch and S. Artavanis-Tsakonas. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell, 61:523–534, 1990.

    Article  Google Scholar 

  30. M.E. Fortini and S. Artavanis-Tsakonas. Notch: Neurogenesis is only part of the picture. Cell, 75:1245–1247, 1993.

    Article  Google Scholar 

  31. M. González-Gaitán and H. Jäckle. Invagination centers within the Drosophila stomatogastric nervous system anlage are positioned by Notch-mediated signaling which is spatially controlled through wingless. Development, 121:2313–2325, 1995.

    Google Scholar 

  32. A. Goriley, N. Dumont, C. Dambly-Chaudière and A. Ghysen. The determination of sense organs in Drosophila: Effect of neurogenic mutations in the embryo. Development, 113:1395–1404, 1991.

    Google Scholar 

  33. I. Greenwald. Structure/function studies of lin-12/Notch proteins. Curr. Opin. Genetics Dev., 4:556–562, 1994.

    Article  Google Scholar 

  34. M. Grell, E. Douni, H. Wajant, M. Lohden, M. Clauss, W. Maxeiner, S. Georgopoulos, W. Lesslauer, G. Kollias, K. Pfizenmaier and P. Scheurich. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80kDa tumor necrosis factor receptor. Cell, 83:793–802, 1995.

    Article  Google Scholar 

  35. M.P. Hassell, H.N. Comins and R.M. May. Spatial structure and chaos in insect population dynamics. Nature, 353:255–258, 1991.

    Article  Google Scholar 

  36. P. Heitzler and P. Simpson. The choice of cell fate in the epidermis of Drosophila. Cell, 64:1083–1092, 1991.

    Article  Google Scholar 

  37. P. Heitzler and P. Simpson. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development, 117: 1113–1123, 1993.

    Google Scholar 

  38. P. Heitzler, M. Bourouis, L. Ruel, C. Carteret and P. Simpson. Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development, 122:161–171, 1996.

    Google Scholar 

  39. S.S. Huppert, T.L. Jacobson and M.A.T. Muskavitch. Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development, 124:3283–3291, 1997.

    Google Scholar 

  40. T.L. Jacobsen, K. Brennan, A. Martinez Arias and M.A.T. Muskavitch. Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development, 125:4531–4540, 1998.

    Google Scholar 

  41. Y.J. Jiang, L. Smithers and J. Lewis. Vertebrate segmentation: The clock is linked to Notch. Curr. Biol, 8:R868–R871, 1998.

    Article  Google Scholar 

  42. M.T. Keating and L.T. Williams. Autocrine stimulation of intracellular pdgf receptors in v-sis-transformed cells. Science, 239:914–916, 1988.

    Article  Google Scholar 

  43. J. Kimble and P. Simpson. The LIN-12/Notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol., 13:333–361, 1997.

    Article  Google Scholar 

  44. K.M. Klueg, T.R. Parody and M.A.T. Muskavitch. Complex proteolytic processing acts on Delta, a transmembrane ligand for Notch, during Drosophila development. Mol Biol Cell, 9:1709–1723, 1998.

    Google Scholar 

  45. C.C. Kopczynski, A.K. Alton, K. Fechtel, P.J. Kooh and M.A.T. Muskavitch. Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev., 2:1723–1735, 1988.

    Article  Google Scholar 

  46. H. Krämer, R.L. Cagan and S.L. Zipursky. Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature, 352:207–212, 1991.

    Article  Google Scholar 

  47. J.E. Kudlow, C-Y M. Cheung and J.D. Bjorge. Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J. Biol Chem., 261:4134–4138, 1986.

    Google Scholar 

  48. V. Kumar, S.A. Bustin and I.A. Mckay. Transforming growth factor alpha. Cell Biol Intl., 19:373–388, 1995.

    Article  Google Scholar 

  49. R. Lehmann, F. Jimenez, U. Dietrich and J.A. Campos-Ortega. On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Roux’s Arch. Dev. Biol, 192:62–74, 1983.

    Google Scholar 

  50. J. Lewis. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol., 6:3–10, 1996.

    Article  Google Scholar 

  51. J. Lewis. Notch signalling and the control of cell fate choices in vertebrates. Sem. Cell Dev. Biol., 9:583–589, 1998.

    Article  Google Scholar 

  52. P.K. Maini, K.J. Painter and H.N.P. Chau. Spatial pattern formation in chemical and biological systems. J. Chem. Soc, Faraday Trans., 93:3601–3610, 1997.

    Article  Google Scholar 

  53. M.J. Mcgrew and O. Pourquie. Somitogenesis: segmenting a vertebrate. Curr. Opin. Genetics Dev., 8:487–493, 1998.

    Article  Google Scholar 

  54. D. Macchia, F. Almerigogna, P. Parronchi, A. Ravina, E. Maggi and S. Romagnani. Membrane tumour necrosis Factor-α is involved in the polyclonal B-cell activation induced by HIV-infected human T-cells. Nature, 363:464–466, 1993.

    Article  Google Scholar 

  55. P. Martin, J. Hopkinson-Woolley and J. McCluskey. Growth factors and cutaneous wound repair. Prog. Growth Factor Res., 4:25–44, 1992.

    Article  Google Scholar 

  56. P. Martin. Mechanisms of wound healing in the embryo and fetus. Curr. Topics Dev. Biol., 32:175–203, 1996.

    Article  Google Scholar 

  57. A. Martinez Arias. Interactions between Wingless and Notch during the assignation of cell fates in Drosophila. Int. J. Dev. Biol., 42:325–333, 1998.

    Google Scholar 

  58. J Massagué. Transforming growth Factor-α: A model for membrane-anchored growth factors. J. Biol. Chem., 265:21393–21396, 1990.

    Google Scholar 

  59. C.A. Micchelli, E.J. Rulifson and S.S. Blair. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development, 124:1485–1495, 1997.

    Google Scholar 

  60. N.A.M. Monk. Restricted-range gradients and travelling fronts in a model of juxtacrine cell relay. Bull. math. Biol., 60:901–918, 1998.

    Article  MATH  Google Scholar 

  61. M.A. Muskavitch. Delta-Notch signalling and Drosophila cell fate. Dev. Biol., 166:415–430, 1994.

    Article  Google Scholar 

  62. M.G. Neubert, M. Kot and M.A. Lewis. Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Pop. Biol., 48:7–43, 1995.

    Article  MATH  Google Scholar 

  63. G. Oster. Lateral inhibition models of developmental processes. Math. Biosci., 90:265–286, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  64. H.G. Othmer and L.E. Scrivens. Instability and dynamic pattern in cellular networks. J. theor. Biol., 32:507–537, 1971.

    Article  Google Scholar 

  65. M.R. Owen and J.A. Sherratt. Mathematical modelling of juxtacrine cell signalling. Math. Biosci. 153:125–150, 1998.

    Article  MATH  Google Scholar 

  66. M.R. Owen, J.A. Sherratt and S.R. Myers. How far can a juxtacrine signal travel ? Proc. R. Soc. Lond. B 266:579–585, 1999.

    Article  Google Scholar 

  67. V.M. Panin, V. Papayannopoulos, R. Wilson and K.D. Irvine. Fringe modulates Notch-ligand interactions. Nature, 387:908–912, 1997.

    Article  Google Scholar 

  68. C. Perez, I. Albert, K. DeFay, N. Zachariades, L. Gooding and M. Kriegler. A nonsecretable cell-surface mutant of tumour necrosis factor (TNF) kills by cell-to-cell contact. Cell, 63:251–258, 1990.

    Article  Google Scholar 

  69. H.L. Qi, M.D. Rand, X.H. Wu, N. Sestan, W.Y. Wang, P. Rakic, T. Xu and S. Artavanis-Tsakonas. Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science, 283:91–94, 1999.

    Article  Google Scholar 

  70. N.J. Savill and P. Hogeweg. Competition and dispersal in predator-prey waves. Submitted, 1997.

    Google Scholar 

  71. G.S. Schultz, M. White, R. Mitchell, G. Brown, J. Lynch, D.R. Twardzik and G.J. Todardo. Epithelial wound healing enhanced by transforming growth Factor-α and vaccinia growth factor. Science, 235:350–352, 1987.

    Article  Google Scholar 

  72. G. Schultz, D.S. Rotatori and W. Clark. EGF and TGFa in wound healing and repair. J. Cell Biochem., 45:346–352, 1991.

    Article  Google Scholar 

  73. J.A. Sherratt, B.T. Eagan and M.A. Lewis. Oscillations and chaos behind predator-prey invasion: Mathematical artefact or ecological reality? Phil Trans. R. Soc. Lond. B, 352:21–38, 1997.

    Article  Google Scholar 

  74. J.M. Shulman, N. Perrimon and J.D. Axelrod. Frizzled signalling and the developmental control of cell polarity. Trends in Genetics, 14:452–458, 1998.

    Article  Google Scholar 

  75. P. Simpson. Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development, 109:509–519, 1990.

    Google Scholar 

  76. P. Simpson. The Notch connection. Nature, 375:736–737, 1995.

    Article  Google Scholar 

  77. P. Simpson. Notch signalling in development on equivalence groups and asymmetric developmental potential. Curr. Opin. Genetics Dev., 7:537–542, 1997.

    Article  MathSciNet  Google Scholar 

  78. J.B. Skeath and S.B. Carroll. Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development, 114:939–946, 1992.

    Google Scholar 

  79. P.W. Sternberg. Falling off the knife edge. Curr. Biol, 3:763–765, 1993.

    Article  Google Scholar 

  80. F.E. Tax, J.J. Yeargers and J.H. Thomas. Sequence of C. elegans lag-2 reveals a cell-signaling domain shared with Delta and Serrate of Drosophila. Nature, 368:150–154, 1994.

    Article  Google Scholar 

  81. U. Tepass and V. Hartenstein. Neurogenic and proneural genes control cell fate specification in the Drosophila endoderm. Development, 121:393–405, 1995.

    Google Scholar 

  82. A.M. Turing. The chemical basis of morphogenesis. Phil. Trans. R. Soc. 237:37–72, 1952.

    Article  Google Scholar 

  83. M.J. van de Vijver, R. Kumar and J. Mendelsohn. Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than internally. J. Biol. Chem., 266:7503–7508, 1991.

    Google Scholar 

  84. H. VÄSSIN, K.A. Bremer, E. Knust and J. Campos-Ortega. The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J., 6:3433–3440, 1987.

    Google Scholar 

  85. C.M. Waters, K.C. Oberg, G. Carpenter and K.A. Overholser. Rate constants for binding, dissociation, and internalization of EGF: Effect of receptor occupancy and ligand concentration. Biochemistry, 29:3563–3569, 1990.

    Article  Google Scholar 

  86. H.J. Wearing, M.R. Owen and J.A. Sherratt. Mathematical modelling of juxtacrine patterning. Bull. Math. Biol. In press.

    Google Scholar 

  87. G. Weinmaster. Notch signaling: direct or what? Curr. Opin. Genetics Dev., 8:436–442, 1998.

    Article  Google Scholar 

  88. H.A. Wilkinson, K. Fitzgerald and I. Greenwald. Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell, 79:1187–1198, 1994.

    Article  Google Scholar 

  89. G.D. Winter. Epidermal regeneration studied in the domestic pig. In: Epidermal Wound Healing (H.I. Maibach and D.T. Rovee, eds.) Chicago: Year Book Med. Publ., 1972.

    Google Scholar 

  90. S. Wolfram. Cellular Automata and Complexity Reading, MA: Addison-Wesley, 1994.

    MATH  Google Scholar 

  91. S.H. Zigmond, S.J. Sullivan, and D.A. Lauffenburger. Kinetic analysis of chemotactic peptide receptor modulation. J. Cell. Biol., 92:34–43, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Monk, N.A.M., Sherratt, J.A., Owen, M.R. (2001). Spatiotemporal Patterning in Models of Juxtacrine Intercellular Signalling with Feedback. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics