Skip to main content

A Minimal Model of Locomotion Applied to the Steady Gliding Movement of Fish Keratocyte Cells

  • Conference paper
Mathematical Models for Biological Pattern Formation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((4522,volume 121))

Abstract

In this paper we present the quantitative analysis of the basic mechanisms underlying the phenomenon of animal cell motility. We describe plausible mechanisms of actin-based protrusive force generation at the cell’s leading edge. We also demonstrate that the dynamics of self-alignment and contraction of the actin-myosin network can explain forward translocation of the cell body. Regulation of graded adhesion between the substrata and the ventral surface of the cell is then discussed. Finally, we derive a one-dimensional mathematical model of cell locomotion applied to fish keratocyte cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abercrombie. The crawling movement of metazoan cells. Proc. R. Soc. Lond. (Biol.), 207:129–147, 1980.

    Article  Google Scholar 

  2. M.C. Beckerle. Spatial control of actin filament assembly: lessons from Listeria. Cell, 95:741–748, 1998.

    Article  Google Scholar 

  3. D. Bray. Cell Movements. Garland, New York, 1992.

    Google Scholar 

  4. D. Bray, N. Money, F. Harold, and J. Bamburg. Responses of growth cones to changes in osmolality of the surrounding medium. J. Cell Sci., 98:507–515, 1991.

    Google Scholar 

  5. S. Chaen, K. Oiwa, T. Shimmen, H. Iwamoto, and H. Sugi. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro. Proc. Natl. Acad. Sci. U.S.A., 86:1510–1514, 1989.

    Article  Google Scholar 

  6. J. Condeelis. Life at the leading edge: the formation of cell protrusions. Annu. Rev. Cell Biol, 9:411–444, 1993.

    Article  Google Scholar 

  7. L.P. Cramer. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. Frontiers in Bioscience, 2:260–270, 1997.

    Google Scholar 

  8. L.P. Cramer and T.J. Mitchison. Myosin is involved in postmitotic cell spreading. J. Cell Biol, 131:179–189, 1995.

    Article  Google Scholar 

  9. C. Cunningham. Actin polymerization and intracellular solvent flow in cell surface blebbing. J. Cell Biol, 129:1589–1599, 1995.

    Article  Google Scholar 

  10. J. Dai and M.P. Sheetz. Mechanical properties of neuronal growth cone raembranes studied by tether formation with laser optical tweezers. Biophys. J., 68:988–996, 1995.

    Article  Google Scholar 

  11. P.A. Dimilla, K. Barbee, and D.A. Lauffenburger. A mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J., 60:15–37, 1991.

    Article  Google Scholar 

  12. E. Evans and R. Skalak. Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton, 1980.

    Google Scholar 

  13. E. Evans and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J., 56:161–160, 1989.

    Article  Google Scholar 

  14. A. Grebecki. Membrane and cytoskeleton flow in motile cells with emphasis on the contribution of free-living amoebae. Int. Rev. Cytol, 148:37–80, 1994.

    Article  Google Scholar 

  15. H. He and M. Dembo. On the mechanics of the first cleavage division of the sea urchin egg. Exp. Cell Research, 233:252–273, 1997.

    Article  Google Scholar 

  16. T.L. Hill. An Introduction to Statistical Thermodynamics. Addison-Wesley Publ. Co, London, 1960.

    Google Scholar 

  17. R. Hochmuth, J. Shao, J. Dai, and M. Sheetz. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys. J., 70:358–369, 1996.

    Article  Google Scholar 

  18. H. Isambert, P. Venier, A. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, and M. Carlier. Flexibility of actin filaments derived from thermal fluctuations: effects of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem., 270:11437–11444, 1995.

    Article  Google Scholar 

  19. G. Isenberg. New coneepts for signal pereeption and transduetion by the actin cytoskeleton at cell boundaries. Semin. Cell Dev. Biol., 7:707–715, 1996.

    Article  Google Scholar 

  20. G. Isenberg and W.H. Goldmann. Peptide-specific antibodies localize the major lipid binding sites of talin dimers to oppositely arranged n-terminal 47 kda subdomains. FEBS Letters, 426:165–170, 1998.

    Article  Google Scholar 

  21. J.E. Italiano, T.M. Roberts, M. Stewart, and Ca. Fontana. Reconstitution in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell, 84:105–114, 1996.

    Article  Google Scholar 

  22. K. Jacobson, A. Ishihara, and R. Inman. Lateral diffusion of proteins in membranes. Ann. Rev. Physioi, 49:163–175, 1987.

    Article  Google Scholar 

  23. J. Kas, H. Strey, M. Barmann, and E. Sackmann. Direct measurement of the wave-vector-dependent bending stiffness of freely flickering actin filaments. Europhys. Lett., 21:865–870, 1995.

    Article  Google Scholar 

  24. A. Kishino and T. Yanagida. Force measurements by micromanipulation of a Single actin filament by glass needles. Nature, 334:74–76, 1988.

    Article  Google Scholar 

  25. D.F. Kucik, E.L. Elson, and M.P. Sheetz. Cell migration does not produce membrane flow. J. Cell Biol, 111:1617–1622, 1990.

    Article  Google Scholar 

  26. D.F. Kucik, S.C. Kuo, E.L. Elson, and M.P. Sheetz. Preferential attachment of membrane glycoproteins to the cytoskeleton at the leading edge of lamella. J. Cell Biol, 115:1029–1036, 1991.

    Article  Google Scholar 

  27. D. Lauffenburger and A. Horwitz. Cell migration: a physically integrated molecular process. Cell, 84:380–399, 1996.

    Article  Google Scholar 

  28. D.A. Lauffenburger and J.J. Lindeman. Receptors: Models for Binding, Traf-ficking and Signalling. Oxford University Press, Oxford, 1993.

    Google Scholar 

  29. J. Lee, A. Ishihara, J.A. Theriot, and K. Jacobson. Principles of locomotion for simple-shaped cells. Nature, 362:467–471, 1993.

    Article  Google Scholar 

  30. J. Lee and K. Jacobson. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J. Cell Sci., 110:2833–2844, 1997.

    Google Scholar 

  31. A.K. Lewis and P.C. Bridgman. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in Organization and polarity. J. Cell Biol, 119:1220–1243, 1992.

    Article  Google Scholar 

  32. C.H. Lin, E.M. Esprefacio, M.S. Mooseker, and P. Forscher. Myosin drives retrograde f-actin flow in neuronal growth cones. Neuron, 16:769–782, 1996.

    Article  Google Scholar 

  33. C.H. Lin and P. Forscher. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron, 14:763–771, 1995.

    Article  Google Scholar 

  34. C.H. Lin, C.A. Thompson, and P. Forscher. Cytoskeletal reorganization underlying growth cone motility. Cur. Opin. NeurobioL, 4:640–647, 1994.

    Article  Google Scholar 

  35. L.M. Machesky. Cell motility: complex dynamics at the leading edge. Current Biology, 7:R164–R167, 1997.

    Article  Google Scholar 

  36. T.J. Mitchison and L.P. Cramer. Actin-based cell motility and cell locomotion. Cell, 84:371–379, 1996.

    Article  Google Scholar 

  37. T.J. Mitchison and M. Kirschner. Cytoskeletal dynamics and nerve growth. Neuron, 1:761–772, 1988.

    Article  Google Scholar 

  38. H. Miyata, S. Nishiyama, K.-I. Akashi, and K. Kinosita. Protrusive growth from giant liposomes driven by actin polymerization. Proc. Natl. Acad. Sci. U.S.A., 96:2048–2053, 1999.

    Article  Google Scholar 

  39. A. Mogilner and G. Oster. Cell motility driven by actin polymerization. Biophys. J., 71:3030–3045, 1996.

    Article  Google Scholar 

  40. A. Mogilner and G. Oster. The physics of lamellipodial Protrusion. Eur. Biophys. J., 25:47–53, 1996.

    Article  Google Scholar 

  41. A. Mogilner, T. Svitkina, A. Verkhovsky, and G. Borisy. Mathematical model for myosin driven forward translocation in keratocytes. In Preparation, 1999.

    Google Scholar 

  42. J.E. Molloy, J.E. Burns, J. Kindrick-Jones, R.T. Tregear, and D.C.S. White. Movement and force produced by a single myosin head. Nature, 378:209–212, 1995.

    Article  Google Scholar 

  43. R.D. Mullins, J.A. Heuser, and T.A. Pollard. The interaction of Arp2/3 complex with actin: nucleation, high afnnity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. U.S.A., 95:6181–6186, 1998.

    Article  Google Scholar 

  44. J.D. Murray. Mathematical Biology. Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

  45. T. Oliver, M. Dembo, and K. Jacobson. Traction forces in locomoting cells. Cell Motu. CytoskeL, 31:225–240, 1995.

    Article  Google Scholar 

  46. T. Oliver, J. Lee, and K. Jacobson. Forces exerted by locomoting cells. Semin. Cell Biol, 5:139–147, 1995.

    Article  Google Scholar 

  47. G. Oster and A. Perelson. Cell protrusions. In S. Levin, editor, Frontiers in Mathematical Biology, volume 100 of Lectures Notes in Biomathematics, pp. 53–78. Springer, Berlin, 1994.

    Chapter  Google Scholar 

  48. C. Peskin, G. Odell, and G. Oster. Cellular motions and thermal fluetuations. Biophys. J., 65:316–324, 1993.

    Article  Google Scholar 

  49. D. Raucher and M.P. Sheetz. Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol, 144:497–506, 1999.

    Article  Google Scholar 

  50. K. Saito, T. Aoki, and T. Yanagida. Movement of single myosin filaments and myosin step size on an actin filament suspended in Solution by a laser trap. Biophys. J., 66:769–777, 1994.

    Article  Google Scholar 

  51. A. Schmidt and M.N. Hall. Signalling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol., 14:305–338, 1998.

    Article  Google Scholar 

  52. M. Sheetz. Cell migration by graded attachment to subsrates and contraction. Sem. Cell Biol, 5:149–155, 1994.

    Article  Google Scholar 

  53. M.P. Sheetz, D.B. Wayne, and A.L. Pearlman. Extension of filopodia by motordependent actin assembly. Cell Motu. Cytoskeleton, 22:160–169, 1992.

    Article  Google Scholar 

  54. J.V. Small. Getting the actin filaments straight: nucleation-release or tread-milling? Trends Cell Biol., 5:52–55, 1995.

    Article  Google Scholar 

  55. T. Stossel. On the crawling of animal cells. Science, 260:1086–1094, 1993.

    Article  Google Scholar 

  56. T.M. Svitkina, A.B. Verkhovsky, K.M. Mcquade, and G.G. Borisy. Analysis of the actin-myosin II System in fish epidermal keratocytes: Mechanism of cell body translocation. J. Cell Biol, 139:397–415, 1997.

    Article  Google Scholar 

  57. H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida. Orientation dependence of displacements by a Single one-headed myosin relative to the actin filament. Biophys. J., 75:1886–1894, 1998.

    Article  Google Scholar 

  58. J. Theriot and T. Mitchison. Actin microfllament dynamics in locomoting cells. Nature, 352:126–131, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Mogilner, A., Marland, E., Bottino, D. (2001). A Minimal Model of Locomotion Applied to the Steady Gliding Movement of Fish Keratocyte Cells. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics