Skip to main content

Modeling Branching and Chiral Colonial Patterning of Lubricating Bacteria

  • Conference paper
Mathematical Models for Biological Pattern Formation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((4522,volume 121))

Abstract

In nature, microorganisms must often cope with hostile environmental conditions. To do so they have developed sophisticated cooperative behavior and intricate communication capabilities, such as: direct cell-cell physical interactions via extramembrane polymers, collective production of extracellular “wetting” fluid for movement on hard surfaces, long range chemical signaling such as quorum sensing and chemotactic (bias of movement according to gradient of chemical agent) signaling, collective activation and deactivation of genes and even exchange of genetic material. Utilizing these capabilities, the colonies develop complex spatio-temporal patterns in response to adverse growth conditions. We present a wealth of branching and chiral patterns formed during colonial development of lubricating, swimming bacteria (bacteria that produce a wetting layer of fluid so they can swim in it). Invoking ideas from pattern formation in non-living systems and using “generic” modeling we are able to reveal novel survival strategies which account for the salient features of the evolved patterns. Using the models, we demonstrate how communication leads to self-organization via cooperative behavior of the cells. In this regard, pattern formation in microorganisms can be viewed as the result of the exchange of information between the micro-level (the individual cells) and the macro-level (the colony). We mainly review known results, but include a new model of chiral growth, which enables us to study the effect of chemotactic signaling on the chiral growth. We also introduce a measure for weak chirality and use this measure to compare the results of model simulations with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adler. Chemoreceptors in bacteria. Science, 166:1588–1597, 1969.

    Article  Google Scholar 

  2. L. Alberti and R.M. Harshey. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J. Bad., 172:4322–4328, 1990.

    Google Scholar 

  3. G. Albrecht-Buehler. In defense of “nonmolecular” cell biology. Int. Rev. Cytol., 120:191–241, 1990.

    Article  Google Scholar 

  4. V.A. Avetisov, V.I. Goldanskii, and V.V. Kuzmin. Handedness, origin of life and evolution. Phys. Today, 44(7):33–41, 1991.

    Article  Google Scholar 

  5. M.Y. Azbel. Survival-extinction transition in bacteria growth. Europhys. Lett., 22(4):311–316, 1993.

    Article  Google Scholar 

  6. E. Ben-Jacob. From snowflake formation to the growth of bacterial colonies, Part I: Diffusive patterning in non-living systems. Contemp. Phys., 34:247–273, 1993.

    Article  Google Scholar 

  7. E. Ben-Jacob. From snowflake formation to the growth of bacterial colonies, Part II: Cooperative formation of complex colonial patterns. Contemp. Phys., 38:205–241, 1997.

    Article  Google Scholar 

  8. E. Ben-Jacob and I. Cohen. Cooperative formation of bacterial patterns. In J.A. Shapiro and M. Dworkin, editors, Bacteria as Multicellular Organisms. Oxford University Press, New-York, 1997.

    Google Scholar 

  9. E. Ben-Jacob, I. Cohen, and A. Czirok. Smart bacterial colonies. In Physics of Biological Systems: From Molecules to Species, Lecture Notes in Physics, pp. 307–324. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  10. E. Ben-Jacob, I. Cohen, A. Czirök, T. Vicsek, and D.L. Gutnick. Chemomodulation of cellular movement and collective formation of vortices by swarming bacteria and colonial development. Physica A, 238:181–197, 1997.

    Article  Google Scholar 

  11. E. Ben-Jacob, I. Cohen, and D. Gutnick. Cooperative organization of bacterial colonies: From genotype to morphotype. Annu. Rev. Microbiol., 52:779–806, 1998.

    Article  Google Scholar 

  12. E. Ben-Jacob, I. Cohen, and H. Levine. Cooperative self-organization of microorganisms. Adv. Phys., 1999 (in press).

    Google Scholar 

  13. E. Ben-Jacob, I. Cohen, O. Shochet, I. Aronson, H. Levine, and L. Tsimering. Complex bacterial patterns. Nature, 373:566–567, 1995.

    Article  Google Scholar 

  14. E. Ben-Jacob, I. Cohen, O. Shochet, A. Czirök, and T. Vicsek. Cooperative formation of chiral patterns during growth of bacterial colonies. Phys. Rev. Lett., 75(15):2899–2902, 1995.

    Article  Google Scholar 

  15. E. Ben-Jacob and P. Garik. The formation of patterns in non-equilibrium growth. Nature, 343:523–530, 1990.

    Article  Google Scholar 

  16. E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenenbaum. Adaptive self-organization during growth of bacterial colonies. Physica A, 187:378–424, 1992.

    Article  Google Scholar 

  17. E. Ben-Jacob, O. Shochet, and A. Tenenbaum. Bakterien schließen sich zu bizarren formationen zusammen. In A. Deutsch, editor, Muster des Ledendigen: Faszination inker Entstehung und Simulation. Verlag Vieweg, 1994.

    Google Scholar 

  18. E. Ben-Jacob, O. Shochet, A. Tenenbaum, and O. Avidan. Evolution of complexity during growth of bacterial colonies. In P.E. Cladis and P. Palffy-Muhoray, editors, S patio-Temporal Patterns in Nonequilibrium Complex Systems, Santa-Fe Institute studies in the sciences of complexity, pp. 619–634. Addison-Weseley Publishing Company, 1995.

    Google Scholar 

  19. E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen, A. Czirók, and T. Vicsek. Communication, regulation and control during complex patterning of bacterial colonies. Fractals, 2(l):15–44, 1994.

    Article  Google Scholar 

  20. E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen, A. Czirók, and T. Vicsek. Generic modeling of cooperative growth patterns in bacterial colonies. Nature, 368:46–49, 1994.

    Article  Google Scholar 

  21. E. Ben-Jacob, A. Tenenbaum, O. Shochet, and O. Avidan. Holotransformations of bacterial colonies and genome cybernetics. Physica A, 202:1–47, 1994.

    Article  Google Scholar 

  22. H. C. Berg. Random Walks in Biology. Princeton University Press, Princeton, N.J., 1993. Expanded ed.

    Google Scholar 

  23. H.C. Berg and E.M. Purcell. Physics of chemoreception. Biophysical Journal, 20:193–219, 1977.

    Article  Google Scholar 

  24. I. Cohen. Mathematical modeling and analysis of pattern formation and colonial organization in bacterial colonies, 1997. M.Sc. thesis, Tel-Aviv University, ISRAEL.

    Google Scholar 

  25. I. Cohen, A. Czirók, and E. Ben-Jacob. Chemotactic-based adaptive self organization during colonial development. Physica A, 233:678–698, 1996.

    Article  Google Scholar 

  26. I. Cohen, I. Golding, and E. Ben-Jacob. Models of chiral bacterial growth, 2000 (in preparation).

    Google Scholar 

  27. I. Cohen, I. Golding, Y. Kozlovsky, and E. Ben-Jacob. Continuous and discrete models of cooperation in complex bacterial colonies. Fractals, 7:235–247, 1999.

    Article  Google Scholar 

  28. A. Czirók, E. Ben-Jacob, I. Cohen, and T. Vicsek. Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E, 54:1791–1801, 1996.

    Article  Google Scholar 

  29. E. Deak, I. Szabo, A. Kalmaczhelyi, Z. Gal, G. Barabas, and A. Penyige. Membrane-bound and extracellular beta-lactamase production with developmental regulation in Streptomyces griseus NRRL B-2682. Microbiol., 144:2169–2177, 1998.

    Article  Google Scholar 

  30. D.J. DeRosier. The turn of the screw: The bacterial flagellar motor. Cell, 93:17–20, 1998.

    Article  Google Scholar 

  31. J.D. Desai and I.M. Banat. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev., 61:47–64, 1997.

    Google Scholar 

  32. M. Dworkin. Developmental biology of the bacteria. Benjamin/Cummings Publishing Company, Reading, 1985.

    Google Scholar 

  33. M. Dworkin. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev., 60:70–102, 1996.

    Google Scholar 

  34. M. Eisenbach. Functions of the flagellar modes of rotation in bacterial motility and Chemotaxis. Molec. Microbiol., 4(2):161–167, 1990.

    Article  Google Scholar 

  35. M. Eisenbach. Control of bacterial Chemotaxis. Mole. Microbiol., 20:903–910, 1996.

    Article  Google Scholar 

  36. J. Feder. Fractals. Plenum, New York, 1988.

    MATH  Google Scholar 

  37. H. Fujikawa and M. Matsushita. Fractal growth of Bacillus subtilis on agar plates. J. Phys. Soc. Jap., 58:3875–3878, 1989.

    Article  Google Scholar 

  38. H. Fujikawa and M. Matsushita. Bacterial fractal growth in the concentration field of nutrient. J. Phys. Soc. Jap., 60:88–94, 1991.

    Article  Google Scholar 

  39. I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob. Studies of bacterial branching growth using reaction-diffusion models of colonial development. Physica A, 260(3, 4):510–554, 1998.

    Article  Google Scholar 

  40. H. Haken. Information and s elf-organization. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  41. R.M. Harshey and T. Matsuyama. Dimorphic transition in Escherichia coli and Salmonella typhimurium — surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl. Acad. Sci. USA, 91:8631–8635, 1994.

    Article  Google Scholar 

  42. R.A. Hegstrom and D.K. Kondepudi. The handedness of the universe. Sci. Am., 262:108–115, 1990.

    Article  Google Scholar 

  43. J. Henrichsen. Bacterial surface translocation: A survey and a classification. Bac. Rev., 36:478–503, 1972.

    Google Scholar 

  44. T.H. Henrici. The Biology of Bacteria: The Bacillaceae. D. C. Heath & company, 3rd edition, 1948.

    Google Scholar 

  45. E. Hoiczyk and W. Baumeister. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol, 8:1161–1168, 1998.

    Article  Google Scholar 

  46. J. Horgan. From complexity to perplexity. Sci. Am., pp. 74–79, June 1995.

    Google Scholar 

  47. O. Katzenelso, H.Z. Hel-Or, and D. Avnir. Chirality of large random supramolecular structures. Chem.-Euro. J., 2:174–181, 1996.

    Article  Google Scholar 

  48. K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, and N. Shigesada. Modeling spatio-temporal patterns created by bacillus-subtilis. J. Theor. Biol., 188:177–185, 1997.

    Article  Google Scholar 

  49. D.A. Kessler, J. Koplik, and H. Levine. Pattern selection in fingered growth phenomena. Adv. Phys., 37:255, 1988.

    Article  Google Scholar 

  50. D.A. Kessler and H. Levine. Pattern formation in dictyostelium via the dynamics of cooperative biological entities. Phys. Rev. E, 48:4801–4804, 1993.

    Article  Google Scholar 

  51. D.A. Kessler, H. Levine, and L. Tsimring. Computational modeling of mound development in dictyostelium. Physica D, 106(3, 4):375–388, 1997.

    Google Scholar 

  52. J.O. Kessler. Co-operative and concentrative phenomena of swimming microorganisms. Cont. Phys., 26:147–166, 1985.

    Article  Google Scholar 

  53. J.O. Kessler and M.F. Wojciechowski. Collective behavior and dynamics of swimming bacteria. In J.A. Shapiro and M. Dworkin, editors, Bacteria as Multicellular Organisms, pp. 417–450. Oxford University Press Inc., New York, 1997.

    Google Scholar 

  54. S. Kitsunezaki. Interface dynamics for bacterial colony formation. J. Phys. Soc. Jpn, 66(5):1544–1550, 1997.

    Article  MATH  Google Scholar 

  55. Y. Kozlovsky, I. Cohen, I. Golding, and E. Ben-Jacob. Lubricating bacteria model for branching growth of bacterial colonies. Phys. Rev. E, 59:7025–7035, 1999.

    Article  Google Scholar 

  56. J.M. Lackiie, editor. Biology of the chemotactic response. Cambridge Univ. Press, 1986.

    Google Scholar 

  57. J.S. Langer. Dendrites, viscous fingering, and the theory of pattern formation. Science, 243:1150–1154, 1989.

    Article  Google Scholar 

  58. S.A. Mackay. Computer simulation of aggregation in dictyostelium discoideum. J. Cell. Sci., 33:1–16, 1978.

    Google Scholar 

  59. B.B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco, 1977.

    Google Scholar 

  60. B.B. Mandelbrot. Fractals: Form, Chance and Dimension. Freeman, San Francisco, 1977.

    MATH  Google Scholar 

  61. M. Matsushita and H. Fujikawa. Diffusion-limited growth in bacterial colony formation. Physica A, 168:498–506, 1990.

    Article  Google Scholar 

  62. M. Matsushita, J. Wakita, H. Itoh, I. Rafols, T. Matsuyama, H. Sakaguchi, and M. Mimura. Interface growth and pattern formation in bacterial colonies. Physica A, 249:517–524, 1998.

    Article  Google Scholar 

  63. M. Matsushita, J.-I. Wakita, and T. Matsuyama. Growth and morphological changes of bacteria colonies. In P.E. Cladis and P. Palffy-Muhoray, editors, Spatio-Temporal Patterns in Nonequilibrium Complex Systems, Santa-Fe Institute studies in the sciences of complexity, pp. 609–618. Addison-Weseley Publishing Company, 1995.

    Google Scholar 

  64. T. Matsuyama, R.M. Harshey, and M. Matsushita. Self-similar colony morphogenesis by bacteria as the experimental model of fractal growth by a cell population. Fractals, 1(3):302–311, 1993.

    Article  Google Scholar 

  65. T. Matsuyama and M. Matsushita. Fractal morphogenesis by a bacterial cell population. Crit. Rev. Microbiol, 19:117–135, 1993.

    Article  Google Scholar 

  66. T. Matsuyama and Y. Nakagawa. Bacterial wetting agents working in colonization of bacteria on surface environment. Colloids Surf. B: Biointerfaces, 7:207–214, Nov. 1, 1996.

    Article  Google Scholar 

  67. N.H. Mendelson. Helical Bacillus subtilis macrofibers: Morphogenesis of a bacterial multicellular macro organism. Proc. Natl. Acad. Sci. USA, 75(5):2478–2482, 1978.

    Article  Google Scholar 

  68. N.H. Mendelson. Bacterial macrofibres: The morphogenesis of complex multicellular bacterial forms. Sci. Progress, 74:425–441, 1990.

    Google Scholar 

  69. N.H. Mendelson, A. Bourque, K. Wilkening, K.R. Anderson, and J.C. Watkins. Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets. J. Bad., 181:600–609, 1999.

    Google Scholar 

  70. N.H. Mendelson and S.L. Keener. Clockwise and counterclockwise pinwheel colony morphologies of Bacillus subtilis are correlated with the helix hand of the strain. J. Bacteriol, 151(l):455–457, 1982.

    Google Scholar 

  71. N.H. Mendelson and J.J. Thwaites. Cell wall mechanical properties as measured with bacterial thread made from Bacillus subtilis. J. Bacteriol., 171(2): 1055–1062, 1989.

    Google Scholar 

  72. M. Mimura, H. Sakaguchi, and M. Matsushita. A reaction-diffusion approach to bacterial colony formation. Preprint, 1997.

    Google Scholar 

  73. J.D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  74. L.K. Nakamura. Bacillus thiaminolyticus sp. nov., nom. rev. Int. J. Syst. Bacteriol., 40:242–246, 1990.

    Article  Google Scholar 

  75. G. Nicolis and I. Prigogine. Exploring Complexity. W.H. Freeman and company, New-York, 1989.

    Google Scholar 

  76. H. Parnas and L. Segel. A computer simulation of pulsatile aggregation in Dictyostelium discoideum. J. Theor. Biol., 71:185–207, 1978.

    Article  Google Scholar 

  77. P. Pelce and A. Pocheau. geometrical approach to the morphogenesis of unicellular algae. J. Theor. Biol., 156:197–214, 1992.

    Article  Google Scholar 

  78. F. Peypoux, J.M. Bonmatin, and J. Wallach. Recent trends in the biochemistry of surfactant. Appl. Microbiol. Biotech., 51:553–563, 1999.

    Article  Google Scholar 

  79. M. Doudoroff, R.Y. Stainer and E.A. Adelberg. The Microbial World. Prentice-Hall and Inc., N. J., 1957.

    Google Scholar 

  80. I. Rafols. Formation of Concentric Rings in Bacterial Colonies. M.Sc. thesis, Chuo University, Japan, 1998.

    Google Scholar 

  81. O. Rauprich, M. Matsushita, C.J. Weijer, F. Siegert, S.E. Esipov, and J.A. Shapiro. Periodic phenomena in proteus mirabilis swarm colony development. J. Bact., 178:6525–6538, 1998.

    Google Scholar 

  82. E. Rosenberg, editor. Myxobacteria: Development and Cell Interactions. Springer series in molecular biology. Springer-Verlag, 1984.

    Google Scholar 

  83. L.M. Sander. Fractal growth processes. Nature, 322:789–793, 1986.

    Article  Google Scholar 

  84. J.E. Segall, S.M. Block, and H.C. Berg. Temporal comparisons in bacterial Chemotaxis. Proc. Natl. Acad. Sci. USA, 83:8987–8991, 1986.

    Article  Google Scholar 

  85. J.A. Shapiro. Bacteria as multicellular organisms. Sci. Am., 258(6):62–69, 1988.

    Article  Google Scholar 

  86. J.A. Shapiro and D. Trubatch. Sequential events in bacterial colony morphogenesis. Physica D, 49:214–223, 1991.

    Article  Google Scholar 

  87. C.H. Shaw. Swimming against the tide: Chemotaxis in Agrobacterium. BioEssays, 13(l):25–29, 1991.

    Article  Google Scholar 

  88. N.J. Shih and R.G. Labbe. Characterization and distribution of amylases during vegetative cell growth and sporulation of Clostridium perfringens. Can. J. Microbiol., 42:628–633, 1996.

    Article  Google Scholar 

  89. O. Shochet. Study of late-stage growth and morphology selection during diffusive patterning. PhD thesis, Tel-Aviv University, 1995.

    Google Scholar 

  90. O. Shochet, K. Kassner, E. Ben-Jacob, S.G. Lipson, and H. Müller-Krumbhaar. Morphology transition during non-equilibrium growth: I. Study of equilibrium shapes and properties. Physica A, 181:136–155, 1992.

    Article  Google Scholar 

  91. O. Shochet, K. Kassner, E. Ben-Jacob, S.G. Lipson, and H. Müller-Krumbhaar. Morphology transition during non-equilibrium growth: II. Morphology diagram and characterization of the transition. Physica A, 187:87–111, 1992.

    Article  Google Scholar 

  92. P.A. Spiro, J.S. Parkinson, and H.G. Othmer. A model of excitation and adaptation in bacterial Chemotaxis. Proc. Natl. Acad. Sci. USA, 94:7263–7268, 1997.

    Article  Google Scholar 

  93. A.M. Spormann. Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol Molec. Biol. Rev., 63:621–, 1999.

    Google Scholar 

  94. S.J. Stahl, K.R. Stewart, and F.D. Williams. Extracellular slime associated with Proteus mirabilis during swarming. J. Bacterioi, 154(2):930–937, 1983.

    Google Scholar 

  95. J.B. Stock, A.M. Stock, and M. Mottonen. Signal transduction in bacteria. Nature, 344:395–400, 1990.

    Article  Google Scholar 

  96. T. Matsuyama, K. Kaneda, Y. Nakagawa, K. Isa, H. Hara-Hotta, and I. Yano. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and-independent spreading growth of Serratia marcescens. J. Bacterioi., 174:1769–1776, 1992.

    Google Scholar 

  97. M. Tcherpakov, E. Ben-Jacob, and D.L. Gutnick. Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster. Int. J. Syst. Bacterioi., 49:239–246, 1999.

    Article  Google Scholar 

  98. D. van Sinderen, R. Kiewiet, and G. Venema. Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Mol. Microbiol., 15:213–223, 1995.

    Article  Google Scholar 

  99. T. Vicsek. Fractal Growth Phenomena. World Scientific, New York, 1989.

    MATH  Google Scholar 

  100. N. Wiener. Cybernetics: Control and communication in the animal and machine. Wiley, New-York, 1948.

    Google Scholar 

  101. G.M. Young, M.J. Smith, S.A. Minnich, and V.L. Miller. The Yersinia enterocolitica motility master regulatory Operon, flhDC, is required for lagellin production, swimming motility, and swarming motility. J. Bact., 181:2823–2833, 1999.

    Google Scholar 

  102. H. Zabrodsky and D. Avnir. Continuous symmetry measures chirality. J. Am. Chem. Soc., 117:462–473, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Ben-Jacob, E., Cohen, I., Golding, I., Kozlovsky, Y. (2001). Modeling Branching and Chiral Colonial Patterning of Lubricating Bacteria. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics