Skip to main content

Biological Pattern Formation — A Marriage of Theory and Experiment

  • Conference paper
Mathematical Models for Biological Pattern Formation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((4522,volume 121))

  • 648 Accesses

Abstract

The interdisciplinary challenges to discover the underlying mechanisms in the generation of biological pattern and form are central issues in development. Here I briefly discuss a philosophy of such an integrative biology approach. I then describe, by way of example, the successful use of a very simple model — even linear — for the growth of brain tumours in an anatomically accurate brain. All of the model parameters are estimated from experiment and patient data. Even with such a basic model the results highlight the inadequacies of current medical intervention treatment of brain tumours. I conclude with some brief general views on the use of models in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Boehm, J. Folkman, T. Browder, and M. O’reilly. Antiangiogenesis therapy of experimental cancer does not induce acquired drug resistance. Nature, 404–407, 1997.

    Google Scholar 

  2. P.K. Burgess, P.M. Kulesa, J.D. Murray, and E.C. Alvord, Jr. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol and Exp Neurol, 56:704–713, 1997.

    Google Scholar 

  3. D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, N.J. Kabani, C.J. Holmes, and A.C. Evans. Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17:463–468, 1998.

    Article  Google Scholar 

  4. V.P. Collins, R. K. Loeffler, and H. Tivey. Observations on growth rates of human tumors. Am J Roentgenol Radium Ther Nucl Med, 76:988–1000, 1956.

    Google Scholar 

  5. G.C. Cruywagen, D.E. Woodward, P. Tracqui, G.T. Bartoo, J.D. Murray, and E.C. Alvord, Jr. The modelling of diffusive tumours. J Biological Systems, 3:937–945, 1995.

    Article  Google Scholar 

  6. J. Folkman. Anti-angiogenesis: New concept for therapy of solid tumors. Annals of Surgery, 75:409–416, 1971.

    Google Scholar 

  7. J. Folkman. Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285:1182–1186, 1972.

    Google Scholar 

  8. J. Folkman. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Medicine, 1:27–31, 1995.

    Article  Google Scholar 

  9. A. Giese, L. Kluwe, B. Laube, H. Meissner, M. Berens, and M. Westphal. Migration of human glioma cells on myelin. Neurosurg, 38:755–764, 1996.

    Article  Google Scholar 

  10. T. Jackson, S.R. Lublin, N.O. Siemers, P.D. Senter, and J.D. Murray. Mathematical and experimental analysis of localization of anti-tumor antibodyenzyme conjugates. British Journal of Cancer, 80:1747–1753, 1999.

    Article  Google Scholar 

  11. F.W. Kreth, P.C. Warnke, R. Scheremet, and C.B. Ostertag. Surgical resection and radiation therapy versus biopsy and radiation therapy in the treatment of glioblastoma multiforme. J Neurosurg, 78:762–766, 1993.

    Article  Google Scholar 

  12. B.C. Liang and M. Weil. Locoregional approaches to therapy with gliomas as paradigm. Curr. Opinion in Oncol., 10:201–206, 1998.

    Article  Google Scholar 

  13. D. Manoussaki, S.R. Lubkin, R.B. Vernon, and J.D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheretica, 44:271–282, 1996.

    Article  Google Scholar 

  14. J.D. Murray, J. Cook, R. Tyson, and S.R. Lubkin. Spatial pattern formation in biology: I dermal wound healing. ii bacterial patterns. Journal of the Franklin Institute, 335B:303–332, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.D. Murray, D. Manoussaki, S.R. Lubkin, and R.B. Vernon. A mechanical theory of in vitro vascular network formation. In C. Little, V. Mironov, and E. Helene Sage, editors, Vascular Morphogenesis in vivo, in vitro, in mente, pages 173–188. Birkhauser, Boston, 1998.

    Google Scholar 

  16. J.M. Nazzaro and E.A. Neuwelt. The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J. Neurosurg., 73:331–344, 1990.

    Article  Google Scholar 

  17. K.R. Swanson. Mathematical modeling of the growth and control of tumors. PhD thesis, University of Washington, 1999.

    Google Scholar 

  18. P. Tracqui, G.C. Cruywagen, D.E. Woodward, G.T. Bartoo, J.D. Murray, and Jr. E.C. Alvord. A mathematical model of glioma growth: the effect of chemotherapy on spatial-temporal growth. Cell Poliferation, 28:17–31, 1995.

    Article  Google Scholar 

  19. R. Tyson, S.R. Lubkin, and J.D. Murray. A minimal mechanism for bacterial patterns. Proc. Roy. Soc. Lond., pages 299–304, 1998.

    Google Scholar 

  20. D.E. Woodward, J. Cook, P. Tracqui, G.C. Cruywagen, J.D. Murray, and Jr. E.C. Alvord. A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif, 29:269–288, 1996.

    Article  Google Scholar 

  21. D.E. Woodward, R. Tyson, M.R. Myerscough, J.D. Murray, E.O. Budrene, and H.C. Berg. Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J., 68:2181–2189, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Murray, J.D. (2001). Biological Pattern Formation — A Marriage of Theory and Experiment. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics