Skip to main content

Moving Frames and Coframes

  • Chapter
Algebraic Methods in Physics

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

First introduced by Gaston Darboux, and then brought to maturity by Ehe Cartan, [4, 5], the theory of moving frames (“repères mobiles”) is widely acknowledged to be a powerful tool for studying the geometric properties of submanifolds under the action of a transformation group. While the basic ideas of moving frames for classical group actions are now ubiquitous in differential geometry, the theory and practice of the moving frame method for more general transformation group actions has remained relatively undeveloped. The famous critical assessment by Weyl in his review [27] of Cartan’s seminal book [5] retains its perspicuity to this day:

I did not quite understand how he [Cartan] does this in general, though in the examples he gives the procedure is clear Nevertheless, I must admit I found the book, like most of Cartan’s papers, hard reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.M. Anderson, Introduction to the variational bicomplex, Contemp. Math., 132 (1992), 51–73.

    Article  Google Scholar 

  2. I.M. Anderson and C.G. Torre, Two component spinors and natural coordinates for the prolonged Einstein equation manifolds, preprint, Utah State University, 1997.

    Google Scholar 

  3. E. Calabi, P.J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker, Differential and numerically invariant signature curves applied to object recognition, Internat. J. Comput. Vision. (To appear)

    Google Scholar 

  4. E. Cartan, La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés, Exposés de Géométrie, Vol. 5, Hermann, Paris, 1935.

    Google Scholar 

  5. E. Cartan, La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Cahiers Scientifiques Vol. 18, Gauthier-Villars, Paris, 1937.

    Google Scholar 

  6. E. Cartan, Sur la structure des groupes infinis de transformations, Oeuvres Complètes, part. II, Vol. 2, Gauthier-Villars, Paris, 1953, pp. 571–624.

    Google Scholar 

  7. S.-S. Chern, Moving frames, The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque, 1985, Numero Hors Serie, pp. 67–77.

    Google Scholar 

  8. O. Faugeras, Cartarís moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes, Applications of Invariance in Computer Vision (J.L. Mundy, A. Zisserman, D. Forsyth, eds.), Lecture Notes in Comput. Sci., Vol. 825, 1994, Springer, New York, pp. 11–46.

    Google Scholar 

  9. M. Fels, P.J. Olver, Moving coframes. I. A practical algorithm, Acta Appl. Math. 15 (1998), No. 2, 161–213.

    Article  MathSciNet  Google Scholar 

  10. M. Fels, P.J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), No. 2, 127-208.

    Google Scholar 

  11. M.L. Green, The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Math. J. 45 (1978), 735–779.

    Article  MathSciNet  MATH  Google Scholar 

  12. P.A. Griffiths, On Cartarís method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775–814.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.W. Guggenheimer, Differential geometry, McGraw-Hill, New York, 1963.

    MATH  Google Scholar 

  14. G.R. Jensen, Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Math., Vol. 610, Springer, New York, 1977.

    Google Scholar 

  15. N. Kamran, Contributions to the study of the equivalence problem of Elie Carian and its applications to partial and ordinary differential equations, Acad. Roy. Belg. CI. Sci. Mém. Collect. 8° (2)45 (1989), No. 7, 1–122.

    Google Scholar 

  16. A. Kumpera, Invariants différentiels d’un pseudogroupe de Lie, J. Differential Geom. 10 (1975), 289–416.

    MathSciNet  MATH  Google Scholar 

  17. S. Lie, Die Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen, Leipzig. Berich. 43 (1891), 316–393; Gesammelte Abhandlungen, Vol. 6, B.G. Teubner, Leipzig, 1927, pp. 300-364.

    Google Scholar 

  18. S. Lie, Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebeger Ordnung, Leipz. Berich. 47 (1895), 53–128; Gesammelte Abhandlungen, Vol. 4, B.G. Teubner, Leipzig, 1929, pp. 320-384.

    Google Scholar 

  19. P. Medolaghi, Classificazione delle equazioni alle derivate parziali del secondo ordine, che ammettono un gruppo infinito di trasformazioni puntuali, Ann. Mat. Pura Appl. (4)1 (1898), No. 3, 229–263.

    Article  Google Scholar 

  20. P.J. Olver, Applications of Lie groups to differential equations, 2nd ed., Grad. Texts in Math., Vol. 107, Springer, New York, 1993.

    Google Scholar 

  21. P.J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  22. P.J. Olver, Singularities of prolonged group actions on jet bundles, University of Minnesota, 1997.

    Google Scholar 

  23. L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982.

    MATH  Google Scholar 

  24. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  25. T.Y. Thomas, The differential invariants of generalized spaces, Chelsea Publ. Co., New York, 1991.

    MATH  Google Scholar 

  26. E. Vessiot, Sur Vintégration des systèmes différentiels qui admettent des groupes continus de transformations, Acta. Math. 28 (1904), 307–349.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Weyl, Cartan on groups and differential geometry, Bull. Amer. Math. Soc. 44 (1938), 598–601.

    Article  MathSciNet  Google Scholar 

  28. T.J. Willmore, Riemannian geometry, Oxford University Press, Oxford, 1993.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fels, M., Olver, P.J. (2001). Moving Frames and Coframes. In: Saint-Aubin, Y., Vinet, L. (eds) Algebraic Methods in Physics. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0119-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0119-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6528-3

  • Online ISBN: 978-1-4613-0119-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics