Skip to main content

Synchrony in Networks of Neuronal Oscillators

  • Conference paper
Multiple-Time-Scale Dynamical Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 122))

  • 604 Accesses

Abstract

We review numerous recent results in which geometric singular perturbation methods have been used to analyze the population rhythms of neuronal networks. The neurons are modeled as relaxation oscillators and the coupling between neurons is modeled in a way that is motivated by properties of chemical synapses. The results give conditions for when excitatory or inhibitory synaptic coupling leads to either synchronized or desynchronized rhythms. Applications to models for sleep rhythms, image segmentation and wave propagation in inhibitory networks are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bal and D.A. Mccormick, What stops synchronized thalamocortical oscillations ?, Neuron 17 (1996), 297–308.

    Article  Google Scholar 

  2. A. Bose, N. Kopell and D. Terman, In Preparation.

    Google Scholar 

  3. T.R. Chay and J. Rinzel, Bursting, beating, and chaos in an excitable membrane model, Biophys. J. 47 (1985), 357–366.

    Article  Google Scholar 

  4. A.H. Cohen, S. Rossignol, and S. Grillner, EDS., Neural Control of Rhythmic Movements in Vertebrates, John Wiley and Sons, Inc., New York (1988).

    Google Scholar 

  5. A. Destexhe, A. Babloyantz, and T.J. Sejnowski, Ionic mechanisms for intrinsic slow oscillations in thalamic relay and reticularis neurons, Biophys. J. 65 (1993), 1538–1552.

    Article  Google Scholar 

  6. A. Destexhe, T. Bal, D.A. Mccormick, and T.J. Sejnowski, Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices, J. Neurophysiol. 76 (1996), 2049–2070.

    Google Scholar 

  7. A. Destexhe and T.J. Sejnowski, Synchronized oscillations in thalamic networks: insights from modeling studies, in Thalamus; Edited by M. Steriade, E.G. Jones, and D.A. McCormick (1996).

    Google Scholar 

  8. D. Golomb, X.-J. Wang and J. Rinzel, Propagation of spindle waves in a thalamic slice model, J. Neurophys 75 (1996), 750–769.

    Google Scholar 

  9. D. Golomb, X.-J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model, J. Neurophys. 72 (1994), 1109–1126.

    Google Scholar 

  10. Cm. Gray, Synchronous oscillations in neuronal systems: Mechanisms and functions, J. Comput. Neurosci. 1 (1994), 11–38.

    Article  Google Scholar 

  11. Cm. Gray and D.A. Mccormick, Chattering Cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex, Science 274 (1996), 109–113.

    Article  Google Scholar 

  12. R.M. Harris-warrick and E. Marder, Modulation of neural networks for behavior, Ann. Rev. Neurosci. 14 (1991), 39–57.

    Article  Google Scholar 

  13. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117 (1952), 500–544.

    Google Scholar 

  14. J.W. Jacklet, ED., Neuronal and Cellular Oscillators, Marcel Dekker Inc., New York (1989).

    Google Scholar 

  15. J.G.R. Jeffreys, R.D. Traub and M.A. Whittington, Neuronal networks for induced ‘40 Hz’ rhythms, Trends Neurosci. 19 (1996), 202–207.

    Article  Google Scholar 

  16. U. Kim, T. Bal, and D.A. Mccormick, Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro, J. Neurophysiol. 74 (1995), 1301–1323.

    Google Scholar 

  17. N. Kopell and G. Lemasson, Rhythmogenesis, amplitude modulation and multiplexing in a cortical architecture, Proc. Nat. Acad. Sci (USA) 91 (1994), 10586–10590.

    Article  Google Scholar 

  18. R.R. Llinas, The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function, Science 242 (1988), 1654–1664.

    Article  Google Scholar 

  19. E.F. Mishchenko and N.KH. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Plenum Press, New York and London (1980).

    MATH  Google Scholar 

  20. C. Morris and H. Lecar, Voltage oscillations in the barnicle giant muscle fiber, Biophysical J. 35 (1981), 193–213.

    Article  Google Scholar 

  21. P. Pinsky and J. Rinzel, Intrinsic and network rhythmogenesis in a reduced Traub model for CAS neurons, J. of Comp. Neuroscience 1 (1994), 39–60.

    Article  Google Scholar 

  22. J. Rinzel, A formal classification of bursting mechanisms in excitable systems, Proceedings of the International Congress of Mathematics, (A.M. Gleason, ed.) AMS (1987), 1578–1593.

    Google Scholar 

  23. J. Rinzel, D. Terman, X.-J. Wang, and B. Ermentrout, Propagating Activity Patterns in Large-Scale Inhibitory Neuronal Networks, Science 279 (1998), 1351–1355.

    Article  Google Scholar 

  24. J. Rinzel, Bursting oscillations in an excitable membrane model, in Ordinary and Partial Differential Equations (B.D. Sleeman and R.J. Jarvis, eds.), Springer-Verlag, New York (1985), 302–316.

    Google Scholar 

  25. J. Rubin and D. Terman, Geometric analysis of population rhythms in synaptically coupled neuronal networks, Submitted.

    Google Scholar 

  26. D. Somers and N. Kopell, Rapid synchronization through fast threshold modulation, Biol. Cyber. 68 (1993), 393–407.

    Article  Google Scholar 

  27. M. Steriade, M. Deschenes, The thalamus as a neuronal oscillator, Brain Res. Rev. 8 (1984), 1–63.

    Article  Google Scholar 

  28. M. Steriade, D.A. Mccormick and T.J. Sejnowski, Thalamocortical oscillations in the sleeping and aroused brain, Science 262 (1993), 679–685.

    Article  Google Scholar 

  29. M. Steriade, D. Contreras, F. Amzica, Synchronized sleep oscillations and their paroxysmal developments, TINS 17 (1994), 199–208.

    Google Scholar 

  30. M. Steriade, E.G. Jones and R.R. Llinas., Thalamic Oscillations and Signaling, Wiley, New York, 1990.

    Google Scholar 

  31. D. Terman, N. Kopell and A. Bose, Dynamics of two mutually coupled inhibitory neurons, Physica D 117 (1998), 241–275.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Terman, N. Kopell and A. Bose, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms, P.N.A.S. 93 (1996), 15417–15422.

    Article  Google Scholar 

  33. D. Terman and E. Lee, Partial synchronization in a network of neural oscillators, SIAM J. Appl. Math. 57 (1997), 252–293.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Terman and D.L. Wang, Global competition and local cooperation in a network of neural oscillators, Physica D 81 (1995), 148–176.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Terman, Chaotic spikes arising from a model for bursting in excitable membranes, SIAM J. Appl. Math. 51 (1991), 1418–1450.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Terman, The transition from bursting to continuous spiking in an excitable membrane model, J. of Nonlinear Science 2 (1992), 1418–1450.

    MathSciNet  Google Scholar 

  37. R.D. Traub, R. Miles, and K.S. Wong, Model of the origin of rhythmic population oscillations in the hippocampal slice, Science 243 (1989), 1319–1325.

    Article  Google Scholar 

  38. R.D. Traub and R. Miles, Neuronal Networks of the Hippocampus, Cambridge University Press, New York (1991).

    Book  Google Scholar 

  39. M. von Krosigk, T. Bal and D.A. Mccormick, Cellular mechanisms of a synchronized oscillation in the thalamus, Science 261 (1993), 361–364.

    Article  Google Scholar 

  40. D.L. Wang and D. Terman, Locally excitatory globally inhibitory oscillator networks, HIE Trans. Neural Nets. 6 (1995), 283–286.

    Article  Google Scholar 

  41. X.-J. Wang and J. Rinzel, Oscillatory and bursting properties of neurons, in The Handbook of Brain Theory and Neural Networks; Edited by Michael A. Arbib (1995), 686–691.

    Google Scholar 

  42. X.-J. Wang and J. Rinzel, Alternating and synchronous rhythms in reciprocally inhibitory model neurons, Neural Comp. 4 (1992), 84–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Terman, D. (2001). Synchrony in Networks of Neuronal Oscillators. In: Jones, C.K.R.T., Khibnik, A.I. (eds) Multiple-Time-Scale Dynamical Systems. The IMA Volumes in Mathematics and its Applications, vol 122. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0117-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0117-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6529-0

  • Online ISBN: 978-1-4613-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics