Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 126))

Abstract

A mathematical model for the transmission dynamics of Schistosomiasis japonicum is derived. The model consists of a system of retarded functional differential equations to take into account two important factors of the transmission process of this disease, i.e., the transit-time distribution and multiple definitive hosts (both human and non-human). The strong monotonicity principle recently established by Wu is used to show that the solution of our model equations defines an eventually strongly monotone semifiow which allows us to give a rather complete qualitative description of the global dynamics of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, J. and May, R.M., Consequences of helminth aggregation for the dynamics of schistosomiasis, Trans. Roy. Soc. Trop. Med. Hyg. 72: 262–273, 1978.

    Article  Google Scholar 

  2. Bowles, J., Blair, D., and McManus, D.P., A molecular phylogeny of the human schistosomes, Molec. Phylogen. and Evolut. 4(2): 103–109, 1995.

    Article  Google Scholar 

  3. Hagan, P. and Gryseels, B., Schistosomiasis research and the European Community, Tropic. and Geogr. Medic. 46(4):259–268, 1994.

    Google Scholar 

  4. Hale, J.K. and Kato, J., Phase space for retarded equations with infinite delay, Funkcialaj Ekvac. 21: 11–41, 1978.

    MathSciNet  MATH  Google Scholar 

  5. He, Y., Xu, S., Shi, F., Shen, W., Hus, S., and Hsu, H., Comparative studies on the infection and maturation of Schistosoma japonicum in cattle and buffaloes, Acta Zool. Sinica 38(3): 266–271, 1992.

    Google Scholar 

  6. Hirschm M.W., The dynamical systems approach to differential equations, Bull. Amer. Math. Soc. 11: 1–64, 1984.

    Article  MathSciNet  Google Scholar 

  7. Hirschm M.W., Systems of differential equations that are competitive or cooperative II: Convergence almost everywhere, SIAM J. Math. Anal. 16: 423–439, 1985.

    Article  MathSciNet  Google Scholar 

  8. Hirschm M.W., Stability and convergence in strongly monotone dynamical systems, J. Reine Angew Math. 383: 1–53, 1988.

    MathSciNet  Google Scholar 

  9. Lee, K.L. and Lewis, E.R., Delay time models of population dynamics with application to schistosomiasis control, IEEE Trans. Biomed. Eng. BME-23: 225–233, 1976.

    Article  Google Scholar 

  10. Lewis, T., A model for the parasitic disease bilharziasis, Adv. Appl. Probab. 7: 673–704, 1975.

    Article  MATH  Google Scholar 

  11. MacDonald, G., The dynamics of helminth infections, with special reference to schistosomes, Trans. R. Soc. Trop. Med. Hyg. 59: 489–506, 1965.

    Article  Google Scholar 

  12. MacDonald, G., On thee Scientific basis of tropical hygiene, Trans. R. Soc. Trop. Med. Hyg. 59: 611–620, 1965.

    Article  Google Scholar 

  13. Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15: 401–454, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  14. Matano, H., Existence of nontrivial unstable sets for equilibrium of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo, Sec. t-lA Math. 30: 645–673, 1983.

    MathSciNet  Google Scholar 

  15. Matano, H., Strongly order-preserving local semi-dynamical systems — theory and applications, Proceedings of Autumn Course on Semigroups, Pitman, New York, 1985.

    Google Scholar 

  16. May, R.M., Togetherness among schistosomes, its effects on the dynamics of the infection, Math. Biosci. 35: 301–343, 1977.

    Article  MATH  Google Scholar 

  17. Naito, T., Integral manifolds for linear functional differential equations on some Banach space, Funkcialoj Ekvac. 13: 199–213.

    Google Scholar 

  18. Naito, T., On linear autonomous retarded equations with an abstract space for infinite delay, J. Differential Equations 33: 74–91, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  19. Naito, T., On autonomous linear functional differential equations with infinite retardations, J. Differential Equations 2: 297–315, 1976.

    Article  MathSciNet  Google Scholar 

  20. Nasell, I., A hybrid model of schistosomiasia with snail latency, Theor. Popul. Biol. 10: 47–69, 1976.

    Article  MathSciNet  Google Scholar 

  21. Nasell, I., On eradication of schistosomiasis, Theor. Popul. Biol. 10: 133–144, 1976.

    Article  MathSciNet  Google Scholar 

  22. Nasell, I. and Hirsch, W.M., A mathematical model of some helminthic infections, Comm. Pure Appl. Math. 25: 459–477, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  23. Nasell, I. and Hirsch, W.M., The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math. 26: 395–453, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  24. Nussbaum, R., The radius of the essential spectrum, Duke Math. J. 37: 473–488, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  25. Nussbaum, R., Positive operators and elliptic eigenvalue problems, Math. Zeit. 186: 247–269, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  26. Nussbaum, R., A folk theorem in the spectral theory of co-semigroups, Pac. J. Math. 113: 433–449, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  27. Nussbaum, R., Hilbert’s Projective Metric and Iterated Nonlinear Maps, Mem. Amer. Math. Soc. 391, 1988.

    Google Scholar 

  28. Shi, Y., Jiang, C., Han, J., Li, Y., and Ruppel, A., Immunization of pigs against infection with Schistosoma japonicum using ultraviolet-attenuated cercaria, Parasitology 106(5): 459–462, 1993.

    Article  Google Scholar 

  29. Smith, H., Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal. 17: 1289–1318, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  30. Smith, H., Invariant curves for mappings, SIAM J. Math. Anal. 17: 1053–1067, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  31. Smith, H., Monotoe semiflows generated by functional differential equations, J. Differential Equations 66: 420–442, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, J., Liu, N., and Zuo, S., The qualitative analysis of model of the transmission dynamics of Japaneses schistosomiasis, Applied Mathematics, a Journal of Chinese Universities 2: 352–362, 1987.

    MATH  Google Scholar 

  33. Wu, J., Strong monotonicity principles and applications to Volterra integrodifferential equations, Differential Equations: Stability and Control, Saber, ed., Marcel Dekker, 1990.

    Google Scholar 

  34. Wu, Z., Bu, K., Yuan, L., Yang, G., Zhu, Z., and Liu, Q., Factors contributing to reinfection with schistosomiasis japonica after treatment in the lake region of China, Acta Tropica 52(2): 83–88, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Wu, J., Feng, Z. (2002). Mathematical Models for Schistosomiasis with Delays and Multiple Definitive Hosts. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, AA. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. The IMA Volumes in Mathematics and its Applications, vol 126. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0065-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0065-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6550-4

  • Online ISBN: 978-1-4613-0065-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics