Moduli for Spherical Minimal Immersions

  • Gabor Toth
Part of the Universitext book series (UTX)


Let V be a Euclidean vector space. A map f : S m SV is conformal if
$$ \left\langle {{f_*}({X_x}),{f_*}({Y_x})} \right\rangle = c(x)\left\langle {{X_x},{Y_x}} \right\rangle , {X_x},{Y_x} \in {T_x}({S^m}), x \in {S^m}, $$
for some positive function c : S m R, called the conformality factor.


Modulus Space Convex Body Congruence Class Canonical Decomposition Minimal Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Gabor Toth
    • 1
  1. 1.Department of Mathematical SciencesRutgers University, CamdenCamdenUSA

Personalised recommendations