Optimal Regression Designs in Symmetric Domains

  • Erkki P. Liski
  • Nripes K. Mandal
  • Kirti R. Shah
  • Bikas K. Sinha
Part of the Lecture Notes in Statistics book series (LNS, volume 163)


Model(s): Fixed coefficient regression models
  • Single factor polynomial

  • Multi-factor linear Symmetric experimental domains: Interval, hypercube and unit ball Major tools: de la Garza (DLG) phenomenon and Loewner order domination of information matrices for search reduction Optimality criteria: Maximization of optimality functional Optimality results: Specific optimal designs for estimation of regression parameters under continuous design theory Thrust: Symmetry, invariance and concavity of optimality functional vis - a - vis symmetric experimental domains


Information Matrix Support Point Symmetric Domain Orthogonal Design Hadamard Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. de la Garza, A. (1954). Spacing of information in polynomial regression. Annals of Mathematical Statistics 25, 123–130.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Elfving, G. (1952). Optimum allocation in linear regression theory. Annals of Mathematical Statistics 23, 255–262.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Elfving, G. (1959). Design of linear experiments. Probability and statistics. The Harald Cramér volume (ed. by Ulf Grenander), 58–74. Wiley, New York.Google Scholar
  4. Hedayat, A. S. and Wallis, W. D. (1978). Hadamard matrices and their applications. Annals of Statistics 6, 1184–1238.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Horn, R. A. and Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  6. Kiefer, J. C. (1959). Optimum experimental designs (with discussion). Journal of the Royal Statistical Socciety Series B 21, 272–319.MathSciNetGoogle Scholar
  7. Liski, E. P. and Zaigraev, A. (2001). A stochastic cracterization of Loewner optimality design criterion in linear models. Appears in Metrika.Google Scholar
  8. Pukelsheim, F. (1993). Optimal design of experiments. Wiley, New York.zbMATHGoogle Scholar
  9. Shah, K. R. and Sinha, Bikas K. (1989). Theory of optimal designs. Lecture Notes in Statistics 54, Springer, New York.Google Scholar
  10. Silvey, S. D. (1980). Optimum design. Chapman&Hall, London.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Erkki P. Liski
    • 2
  • Nripes K. Mandal
    • 1
  • Kirti R. Shah
    • 4
  • Bikas K. Sinha
    • 3
  1. 1.Department of StatisticsCalcutta UniversityCalcuttaIndia
  2. 2.Department of Mathematics, Statistics, and PhilosophyUniversity of TampereTampereFinland
  3. 3.Stat-Math DivisonIndian Statistical InstituteCalcuttaIndia
  4. 4.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations