Skip to main content

Upscaling of Biological Processes and Multiphase Flow in Highly Heterogeneous Media

  • Conference paper
Resource Recovery, Confinement, and Remediation of Environmental Hazards

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 131))

  • 275 Accesses

Abstract

In order to remediate contamination of our aquifers or optimize the recovery of hydrocarbon from subsurface reservoirs, one must be able to accurately simulate the multiphase flow of fluids through highly heterogeneous media. The fine-scale interfacial interactions greatly influence flow properties particularly in the presence of bioprocesses; these effects must be upscaled through many scales of heterogeneities in the subsurface lithologies. Large-scale correlations of flow properties in the subsurface can cause chanelling, which greatly influences the production or remediation strategies. We will discuss various difficulties in this upscaling process in the context of bioremediation and will present some directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Allen, R. E. Ewing, and P. Lu, Well conditioned iterative schemes for mixed finite element models of porous-media flows, SIAM Journal of Scientific and Statistical Computing, 13(3) (1992), 794–814.

    MathSciNet  MATH  Google Scholar 

  2. M. Ainsworth and J. T. Oden, A unified approach to a aposteriori error estimators based on element residual methods, Numer. Math., 65 (1993), 23–50.

    MathSciNet  MATH  Google Scholar 

  3. B. Amaziane, and A. Bourgeat, Effective behavior of two-phase flow in heterogeneous reservoir, Numerical Simulation in Oil Recovery, ed. M. F. Wheeler, IMA Volumes in Mathematics and Its Application, Springer Verlag, 11 (1988), 1–22.

    Google Scholar 

  4. B. Amaziane, A. Bourgeat, and J. Koebbe, Numerical simulation and homogenization of two-phase flow in heterogeneous porous media, Transport in Porous Media (to appear ).

    Google Scholar 

  5. T. Arbogast, C. N. Dawson, and P. T. Keenan, Efficient mixed methods for groundwater flow on triangular or tetrahedral meshes, Comp. Meth. Water Resources X 1 (A. Peters et al., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 3–10.

    Google Scholar 

  6. T. Arbogast, P. T. Keenan, M. F. Wheeler, and I. Yotov, Logically rectangular mixed methods for darcy flow on general geometry, SPE 29099, Proceedings of 13th Symposium on Reservoir Simulation, San Antonio, TX, February 12-15, 1995, pp. 51–59.

    Google Scholar 

  7. T. Arbogast, S. Minkoff, and P. Keenan, An operator-based approach to upscaling the pressure equation, Comput. Meth. Water Res. XII, Volume 1, Computational Methods in Contamination and Remediation of Water Resources V. N. Burganos, et al., (eds.), Computational Mechanics Publications, Southampton, U.K., 1998, pp. 405–412.

    Google Scholar 

  8. T. Arbogast and M. F. Wheeler, A characteristic mixed finite element method for advection dominated transport problems, SIAM J. Numer. Anal. 32 (1995).

    Google Scholar 

  9. T. Arbogast, M. F. Wheeler, and I. Yotov, Logically rectangular mixed methods for groundwater flow and transport on general geometry, Comp. Meth. Water Resources X 1 (A. Peters et al., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 149–156.

    Google Scholar 

  10. T. Arbogast, M. F. Wheeler, and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-cente red finite differences, SIAM J. Numer. Anal. (to appear).

    Google Scholar 

  11. J. W. Barrett and K. W. Morton, Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 97–122.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Becker, C. Johnson, and R. Rannacher, Adaptive Error Control for Multigrid Finite Element Methods, Computing, Springer-Verlag, 1995.

    Google Scholar 

  13. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math., 4 (1996), 237–264.

    MathSciNet  MATH  Google Scholar 

  14. M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, TR NA-83-02, Computer Science Department, Stanford University, California, 1983.

    Google Scholar 

  15. P. J. Binning, Modeling Unsaturated Zone Flow and Contaminant Transport in the Air and Water Phases, Ph.D. Dissertation, Department of Civil Engineering and Operations Research, Princeton University, 1994.

    Google Scholar 

  16. J. H. Bramble, R. E. Ewing, R. R. Parashkevov, and J. E. Pasciak, Domain decomposition methods for problems with partial refinement, SIAM J. Scientific and Statistical Computing, 13(1) (1992), 397–410.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Computer Meth. in App. Mech. and Eng., 67 (1988), 149–159.

    Article  MATH  Google Scholar 

  18. J. H. Bramble, R. E. Ewing, J. E. Pasciak, and J. Shen, The analysis of multigrid algorithms for cell centered finite difference methods, Mathematical Sciences Institute, Technical Report 94-33, Cornell University, 1994; and Advances in Computational Mathematics (to appear).

    Google Scholar 

  19. J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring, IV, Math. Comp., 53 (1989), 1–24.

    MathSciNet  MATH  Google Scholar 

  20. F. Brezzi, J. Douglas, Jr., R. Dura, and M. Fortin, Mixed finite elements for second-order elliptic problems in three variables, Numer, Math. 51 (1987), 237–250.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Carrera and S. P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information, Water Resour. Res., 22(2) (1986), 199–210.

    Article  Google Scholar 

  22. M. A. Celia and P. Binning, Two-phase unsaturated flow: One dimensional simulation and air phase velocities, Water Resources Research 28 (1992), 2819–2828.

    Article  Google Scholar 

  23. M. A. Celia and P. Binning, Multiphase models of unsaturated flow: Approaches to the governing equations and numerical methods, Proc, IX Int. Conf. on Compo Methods Water Res. (Russell et al., eds.), Elsevier Applied Science, London, 1992, pp. 257–272.

    Google Scholar 

  24. M. A. Celia, I. Herrera, E. Bouloutas, and J. S. Kindred, A new numerical approach for the advective diffusive transport equation, Numer. Meth. PDE, 5 (1989), 203–226.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. A. Celia, P. C. Reeves, and L. A. Ferrand, Pore-scale models for multiphase flow in porous media, Reviews of Geophysics, Supplement (1995), pp. 1049–1057.

    Google Scholar 

  26. M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13 (1990), 187–206.

    Article  Google Scholar 

  27. G. Chavent, A new formulation of diphasic incompressible flows in porous media, Lecture Notes in Mathematics 503, Springer-Verlag, 1976.

    Google Scholar 

  28. B. Chen, Numerical simulation of biofilm growth in porous media, J. Comp. Appl. Math., 103 (1999), 55–66.

    Article  MATH  Google Scholar 

  29. B. Chen, A. Cunningham, R. Ewing, R. Peralta, and E. Visser, Two-dimensional modeling of microscale transport and biotransformation, Porous Media Numerical Methods for Partial Differential Equations, 10 (1994), 65–83.

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Chen and J. Douglas, Jr., Prismatic mixed finite elements for second-order elliptic problems, Calcolo 26 (1989), 135–148.

    Article  MathSciNet  MATH  Google Scholar 

  31. Z. Chen, R. E. Ewing, and M. Espedal, Multiphase flow simulation with various boundary conditions, Proceedings X International Conference on Computational Methods in Water Resources, Heidelberg, Germany, July 19-22, 1994 (to appear).

    Google Scholar 

  32. L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for ??? finite elements, Math. Comp. (to appear).

    Google Scholar 

  33. A. Cunningham, E. Visser, Z. Lewandawski, and M. Abrahamson, Evaluation of a coupled mass transport-biofilm process model using dissolved xxygen microsensors, Water Science Technology, 32(8) (1995), 107–114.

    Article  Google Scholar 

  34. J. H. Cushman, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Transport in Porous Media, 13 (1993), 123–138.

    Article  Google Scholar 

  35. J. H. Cushman, X. Hu, and F. Deng, Nonlocal reactive transport with physical and chemical heterogeneity: Localization error, Water Resources Research, 31 (1995), 2219–2237.

    Article  Google Scholar 

  36. J. H. Cushman, X. Hu, and T. R. Ginn, Nonequilibrium statistical mechanics of preasymptotic dispersion, J. Stat. Phy., 5(6) (1994), 859–878.

    Article  MathSciNet  Google Scholar 

  37. G. Dagan, Stochastic modeling of groundwater flow by unconditional and conditional probabilities: The inverse problem, Water Resour. Res., 21(1) (1985), 65–72.

    Article  MathSciNet  Google Scholar 

  38. G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, Berlin-Heidelberg, 1989.

    Book  Google Scholar 

  39. G. Dagan, Dispersion of a passive solute in non-ergodic transport by steady velocity fields in heterogeneous formations, J. Fluid Mech. 233 (1991), 1281–1290.

    Article  MathSciNet  Google Scholar 

  40. G. Dagan, The significance of heterogeneity of evolving scales to transport in porous formations, Water Resources Research 30 (1994), 3327–3336.

    Article  Google Scholar 

  41. G. Dagan and Y. Rubin, Stochastic identification of recharge, transmissivity and storativity in aquifer unsteady flow: A quasi-steady approach, Water Resour. Res., 24(10) (1988), 1698–1710.

    Article  Google Scholar 

  42. H. K. Dahle, M. S. Espedal, R. E. Ewing, and O. Sjevareid, Characteristic adaptive subdomain methods for reservoir flow problems, Numerical Methods for Partial Differential Equations, 6 (1990), 279–309.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. K. Dahle, R. E. Ewing, and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear advection-diffusion equation, Comput. Meth. Appl. Mech. Eng. (to appear).

    Google Scholar 

  44. C. Dawson, Q. Du, and T. Dupont, A finite difference domain decomposition algorithm from numerical solution of the heat equation, 57(1) (1991), 63–71.

    Google Scholar 

  45. L. Demkowitz and J. T. Oden, An adaptive characteristics Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables, Comp. Meth. Appl. Mech. Eng., 55 (1986), 63–87.

    Article  Google Scholar 

  46. J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R.A.I.R.O. Analyse Numerique, 17 (1983), 249–265.

    MathSciNet  MATH  Google Scholar 

  47. J. Douglas, Jr. and T. F. Russell, Numerical methods for convection dominated diffusion problems based on combining the method of Characteristics with Finite Element or Finite Difference Procedures, SIAM J. Numer. Anal., 19 (1982), 871–885.

    Article  MathSciNet  MATH  Google Scholar 

  48. F. A. L. Dullien, Porous Media: Fluid Transport and Pore Structure, Second Edition, Academic Press ( San Diego), 1992.

    Google Scholar 

  49. L. J. Durlofsky, Representation of grid block permeability in coarse scale models of randomly heterogeneous porous media, Water Resources Research 28 (1992), 1791–1800.

    Article  Google Scholar 

  50. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems, I-IV, SIAM J. Numer. Anal., 28–32 (1991-1995).

    Google Scholar 

  51. M. S. Espedal and R. E. Ewing, Characteristic Petrov-Galerkin subdomain methods for two-phae immiscible flow, Computer Methods in Applied Mechanics and Engineering. 64 (1987),113–135.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. S. Espedal, P. Langlo, O. Saevareid, E. Gislefoss, and R. Hansen, Heterogeneous reservoir models; local refinement and effective parameters, SPE 21231, Proc. 11 th SPE Symp. on Res. Sim., Anaheim California, Feb. 17-20, 1991, pp. 307–316.

    Google Scholar 

  53. R. E. Ewing, Efficient adaptive procedures for fluid flow applications, Comp. Methods Appl. Mech. Engrg, 55 (1986), 89–103.

    Article  MATH  Google Scholar 

  54. R. E. Ewing, Supercomputing in reservoir simulation, Supercomputing in Engineering Analysis, New York, Marcel Dekker, 1991, pp. 325–259.

    Google Scholar 

  55. R. E. Ewing, Aspects of numerical methods in multiphase flows, Subsurface Flow and Transport: A Stochastic Approach Gedeon Dagan and Sholomo P. Neuman (eds.), Cambridge University Press, 1997, pp. 92–100.

    Google Scholar 

  56. R. R. Ewing, Mathematical modeling and simulation for applications of fluid flow in porous media, Current and Future Directions in Applied Mathematics, M. Alber, B. Hu, and J. Rosenthal (eds.), Birkhauser, Berlin, Germany, 1997, pp. 161–182.

    Chapter  Google Scholar 

  57. R. E. Ewing, The need for multidisciplinary involvement in groundwater contaminant simulations, Proceedings of Next Generation Environmental Models and Computational Methods, G. Delic and M. Wheeler (eds.) (1997), pp. 227–245.

    Google Scholar 

  58. R. E. Ewing, R. D. Lazarov, J. E. Pasciak, and P. S. Vassilevski, Domain decomposition type iterative techniques for parabolic problems on locally refined grids, SIAM J. Num. Anal., 30(6) (1993), 1537–1557.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. E. Ewing, R. D. Lazarov, and A. T. Vassilev, Finite difference scheme for parabolic problems on composite grids with refinement in time and space, SIAM J. Numer. Anal., 31 (1995), 1605–1622.

    Article  MathSciNet  Google Scholar 

  60. R. E. Ewing, R. D. Lazarov, and P. S. Vassilevski, Finite difference schemes on grids with local refinement in time and in space for parabolic problems. I. Derivation, stability and error analysis, Computing, 45 (1990), 193–215.

    MathSciNet  MATH  Google Scholar 

  61. R. E. Ewing, R.D. Lazarov, and P. S. Vassilevski, Finite difference schemes on grids with local refinement in time and in space for parabolic problems. II. Optimal order two-grid iterative methods, Notes on Numerical Fluid Mechanics, W. Hackbusch (ed.), 25 (1990), 70–93.

    Google Scholar 

  62. R. E. Ewing, T. F. Russell, and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng., 47 (1984), 73–92.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. E. Ewing, Domain decomposition techniques for efficient adaptive local grid refinement, Domain Decomposition Methods, eds. T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund, SIAM, Philadelphia, PA, 1989, 192–206.

    Google Scholar 

  64. R. E. Ewing, Operator splitting and Eulerian-Lagrangian localized adjoint methods for multiphase flow, The Mathematics of Finite Elements and Applications VII MAFELAP 1990, ed. J. Whiteman, ed., Academic Press Inc., San Diego, CA, 1991, pp. 215–237.

    Google Scholar 

  65. R. E. Ewing, B. A. Boyett, D. K. Babu, and R. F. Heinemann, Efficient use of locally refined grids for multiphase reservoir simulations, SPE 18413, Proceedings Tenth SPE Symposium on Reservoir Simulation, Houston, TX, February 6-8, 1989, pp. 55–70.

    Google Scholar 

  66. R. E. Ewing and R. F. Heinemann, Mixed finite element approximation of phase velocities in compositional reservoir simulation, Computer Meth. Appl. Mech. Eng., 47 (1984), 161–176.

    Article  MATH  Google Scholar 

  67. R. E. Ewing, J. V. Koebbe, R. Gonzalez, and M. F. Wheeler, Mixed finite element methods for accurate fluid velocities, Finite Elements in Fluids 4 (1985), Wiley, New York, 233–249.

    Google Scholar 

  68. R. E. Ewing, R. D. Lazarov, T. F. Russell, and P. S. Vassilevski, Local refinement via domain decomposition techniques for mixed finite element methods with rectangular Raviart-Thomas elements, Domain Decomposition Methods for Partial Differential Equations, eds. T. F. Chan, R. Glowinski, J. Periaux, and O. Widlund, SIAM Publications, Philadelphia, PA, 1990, pp. 98–114.

    Google Scholar 

  69. R. E. Ewing, T. F. Russell, and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Computer Meth. Appl. Mech. Eng., 47 (1984), 73–92.

    Article  MathSciNet  MATH  Google Scholar 

  70. R. E. Ewing, T. F. Russell, and L. C. Young, An anisotropic Coarse-grid dispersion model of heterogeneity and viscous fingering in five-spot miscible displacement that matches experiments and fine-grid simulations, SPE 18441, Proceedings Tenth SPE Symposium on Reservoir Simulation, Houston, Texas, Texas, February 6-8, 1989, pp. 447–466.

    Google Scholar 

  71. R. E. Ewing, J. Shen, and P. S. Vassilevski, Vectorizable preconditioners for mixed finite element solution of second-order elliptic problems, International Journal of Computer Mathematics, 44 (1992), 313–327.

    Article  MATH  Google Scholar 

  72. R. E. Ewing and H. Wang, Optimal-order convergence rate for Eulerian-Lagrangian localized adjoint method for reactive transport and contamination in groundwater, Numerical Methods in PDE’s, 11(1) (1995), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  73. R. E. Ewing, H. Wang, and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis, IMA J. Numerical Analysis (to appear).

    Google Scholar 

  74. R. E. Ewing and J. Wang, Analysis of mixed finite element methods on locally refined grids, Numerische Mathematik, 63 (1992), 183–194.

    Article  MathSciNet  MATH  Google Scholar 

  75. R. E. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite element methods, R.A.I.R.O. Modélisation Mathématique Analyse Numérique, 26 (1992), 739–756.

    MathSciNet  MATH  Google Scholar 

  76. L. A. Ferrand and M. A. Celia, The effect of heterogeneity on the drainage capillary pressure-saturation relation, Water Resources Research 28(3) (1992), 859–870.

    Article  Google Scholar 

  77. U. Fischer and M. A. Celia, Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model, Water Resources Research, 35(4), 1999, 1089–1100.

    Article  Google Scholar 

  78. J. Furtado, J. Glimm, W. B. Lindquist, and L. F. Pereira, Characterization of mixing length growth for flow in heterogeneous porous media, Proceedings of Eleventh SPE Symposium on Reservoir Simulation, Anaheim, CA, 1991, pp. 317–322.

    Google Scholar 

  79. L. W. Gelhar and C. L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resourc. Res., 19(1) (1983), 161–180.

    Article  Google Scholar 

  80. T. R. Ginn and J. H. Cushman, Inverse methods for subsurface flow: A critical review of stochastic techniques, Stoch. Hydrol. Hydraul., 4 (1990), 1–26.

    Article  MATH  Google Scholar 

  81. J. Glimm and W. B. Lindquist, Scaling laws for macrodispersion, Proceedings of the Ninth Int. Conf. on Comp. Meth. in Water Resources, 2 (1992), 35–49.

    MathSciNet  Google Scholar 

  82. J. Glimm, W. B. Lindquist, F. Pereira, and R. Peierls, The multi-fractal hypothesis and anomalous diffusion, Revista Brasileira de Matematica Aplicada e Computacional 11 (1992), 31–49.

    MathSciNet  Google Scholar 

  83. J. Glimm, W. B. Lindquist, F. Pereira, and Q. Zhang, A theory of macrodispersion for the scale up problem, Transport in Porous Media (to appear).

    Google Scholar 

  84. W. G. Gray, M. A. Celia, and P. C. Reeves, Incorporation of interfacial areas in models of two-phase flow, in Vadose Zone Hydrology-Cutting Across Disciplines, M. B. Pariange and J. W. Hopmans (eds.), Oxford University Press ( New York), 1999, pp. 58–85.

    Google Scholar 

  85. W. G. Gray, and S. M. Hassanizadeh, Unsaturated Flow Theory Including Interfacial Phenomena, Water Resources Research, 27(8) (August, 1991), 1855–1863.

    Article  Google Scholar 

  86. H. Haldorsen and E. Damseth, Stochastic modeling, J. Pet. Tech., 42 (1990), 404–413.

    Google Scholar 

  87. R. J. Held and M. A. Celia, Modeling support of functional relationships between capillary pressure, saturation, interfacial area, and common Lines, Advances in Water Resources, 2000a, to appear.

    Google Scholar 

  88. R. Held and M. A. Celia, Pore-scale modeling and upscaling of nonaqueous phase liquid mass transfer, Water Resources Research, 2000b, under review.

    Google Scholar 

  89. R. J. Held and M. A. Celia, Pore-scale modeling of mass transfer from nonaqueous phase liquids, in Proc. 12th Int’l Conf. Computational Methods in Water Resources, Vol. 1, Computational Methods in Contamination and Remediation of Water Resources, Burganos et al. (eds.), 1998, pp. 445–452.

    Google Scholar 

  90. I. Herrera, Unified formulation of numerical methods I. Green’s formula for operators in the discontinuous fields, Numer. Methods for PDE, 1 (1985), 25–44.

    Article  MathSciNet  MATH  Google Scholar 

  91. I. Herrera, R. E. Ewing, M. A. Celia, and T. F. Russell, Eulerian-Lagrangian localized adjoint method: The theoretical framework, Numer. Meth. for PDE, 9 (1993), 431–457.

    Article  MathSciNet  MATH  Google Scholar 

  92. K. M. Hess, S. H. Wolf, and M. A. Celia, Hydraulic conductivity variability and macrodispersion in a sand and gravel aquifer, Cape Cod Massachusetts, Water Resources Research 28(8) (1992), 2011–2027.

    Article  Google Scholar 

  93. P. K. Kitanidis and E. G. Vomvoris, A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations, Water Resour. Res., 19(3) (1983), 677–690.

    Article  Google Scholar 

  94. J. Koebbe, A computationally efficient modification of mixed finite element methods for flow problems with full transmissivity tensors, Numer. Meth. PDE’s 9 (1993), 339–355.

    Article  MathSciNet  MATH  Google Scholar 

  95. P. Langlo, Macrodispersion for two-phase immiscible flow in heterogeneous media, Ph.D. Thesis, Union of Bergen, Norway, 1992.

    Google Scholar 

  96. P. Langlo and M. S. Espedal, Macrodispersion for two-phase, immiscible flow in porous media, Advances in Water Resources (to appear).

    Google Scholar 

  97. R. D. Lazarov, J. E. Pasciak, and S. Z. Tomov, Error control, local grid refinement, and efficient solution algorithms for singularly perturbed problems, Technical Report, ISC-gg-04-MATH, Texas A&M University, Analytical and Numerical Methods for Singularly Perturbed Problems, Nuova Science Publishing House, USA, 1999.

    Google Scholar 

  98. W. B. Lindquist, W. Oh, and A. Venkatarangan, A stochastic kriging algorithm, Technical Report SUNYSB-AMS-g4-17, State University of New York, Applied Mathematics and Statistics Department, 1994.

    Google Scholar 

  99. S. Maliassov, Y. Kuznetsov, R. D. Lazarov, and R. E. Ewing, Substructure preconditioning for porous flow problems, Finite Element Modeling for Environmental Problems, Chapter 17, John Wiley and Sons, New York, 1994, pp. 303–329.

    Google Scholar 

  100. S. Neuman and Y.-K. Zhang, A quasi-linear theory of non-Fickian and Fickian subsurface dispersion I. Theoretical analysis with application to isotropic media, Water Resources Research 26 (1990), 887–902.

    Google Scholar 

  101. H. Rajaram, L. A. Ferrand, and M. A. Celia, Prediction of relative permeabilities for unconsolidated soils using pore-scale network models, Water Resources Research, 33(1), 1997, 43–52.

    Article  Google Scholar 

  102. P. C. Reeves and M. A. Celia, A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model, Water Resources Research, 32(8) (1996), 2345–2358.

    Article  Google Scholar 

  103. H.-O. Ross, Layer-adapted grids for singular perturbation problems, Z. Angew. Math. Mech. (ZAMM), 78 (1998), 291–309.

    Article  Google Scholar 

  104. H.-O. Ross, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer, 1996.

    Google Scholar 

  105. Y. Rubin, Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resources Research, 26 (1990), 133–141.

    Article  Google Scholar 

  106. Y. Rubin and G. Dagan, Stochastic identification of transmissivity and effective recharge in steady state groundwater flow, 1, Theory, Water Resour. Res., 23(7) (1987), 1192–1200.

    Google Scholar 

  107. Y. Rubin and G. Dagan, Stochastic identification of transmissivity and effective recharge in steady state groundwater flow, 2, Case study, Water Resour. Res., 23(7) (1987), 1192–1200.

    Google Scholar 

  108. Y. Rubin, B. Mayko, and J. Harris, Mapping permeability in heterogeneous aquifers using hydrological and seismic data, Water Resour. Res., 28(7) (1992), 1809–1816.

    Article  Google Scholar 

  109. T. F. Russell, The time-stepping along characteristics with incomplete iteration for Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22 (1985), 970–1013.

    Article  MathSciNet  MATH  Google Scholar 

  110. T. F. Russell, Eulerian-Lagrangian localized adjoint methods for advection-dominated problems, Proc. 13th Biennial Conf. Numerical Analysis, Dundee, Scotland, June 27-30, 1989, Pitman, London.

    Google Scholar 

  111. T. F. Russell and R. V. Trujillo, Eulerian-Lagrangian localized adjoint methods with variable coefficients in multiple divergences, Proc. 7th Internat. Conf. Computational Methods in Water Resources, Venice, Italy (to appear).

    Google Scholar 

  112. T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, The Mathematics of Reservoir Simulation, ed. R. E. Ewing, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1983.

    Google Scholar 

  113. M. Sahimi, Flow and Transport in Porous Media and Fractured Rocks, VCH, Germany, 1995.

    Google Scholar 

  114. E. A. Sudicky, A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of the hydraulic conductivity and its role in the dispersion process, Water Resources Research 22 (1986), 2069–2082.

    Article  Google Scholar 

  115. M. R. Todd and W. J. Longstaff, The development, testing and application of a numerical simulator for predicting miscible flood performance, J. Pet. Technol., 253 (1972), 874–882.

    Google Scholar 

  116. H. Wang, R. E. Ewing, and M. A. Celia, Eulerian-Lagrangian localized adjoint methods for reactive transport with biodegradation, Numerical Methods for P.D.E.’s, 11(3) (1995), 229–254.

    Article  MathSciNet  MATH  Google Scholar 

  117. W. W.-G. Yeh, Review of parameter identification procedures in groundwater hydrology, the inverse problem, Water Resour. Res., 22(2) (1986), 95–108.

    Article  Google Scholar 

  118. L. C. Young, A study of spatial approximations for simulating fluid displacements in petroleum reservoirs, Comp. Meth. in Appl. Mech. Eng., 47 (1984), 3–46.

    Article  MATH  Google Scholar 

  119. Q. Zhang, A multi-length scale theory of the anomalous mixing length growth for tracer flow in heterogeneous porous media, J. Stat. Phys. 66 (1991), 485–501.

    Article  Google Scholar 

  120. Q. Zhang, The asymptotic scaling behavior of mixing induced by a random velocity field, Adv. Appl. Math. 16 (1995), 23–58.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Ewing, R.E. (2002). Upscaling of Biological Processes and Multiphase Flow in Highly Heterogeneous Media. In: Chadam, J., Cunningham, A., Ewing, R.E., Ortoleva, P., Wheeler, M.F. (eds) Resource Recovery, Confinement, and Remediation of Environmental Hazards. The IMA Volumes in Mathematics and its Applications, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0037-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0037-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6553-5

  • Online ISBN: 978-1-4613-0037-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics