Skip to main content

The Local Discontinuous Galerkin Method for Advection-Diffusion Equations Arising in Groundwater and Surface Water Applications

  • Conference paper
Resource Recovery, Confinement, and Remediation of Environmental Hazards

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 131))

Abstract

We describe a discontinuous finite element method for groundwater and surface water applications, based on the local discontinuous Galerkin method of Cockburn and Shu [16] . This method is defined locally over each element, allows for the use of different approximating polynomials in different elements, and allows for nonconforming elements. Upwinding is built into the method for stability in advection-dominated cases. The method is also locally and globally conservative. We describe the method for fairly general multi-dimensional systems of nonlinear advection-diffusion equations, and then give some numerical results specifically for contaminant transport in groundwater and surface water hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Aizinger, P. Castillo, B. Cockburn, and C. Dawson, The local discontinuous Galerkin method for contaminant transport, Advances in Water Resources, 24 (2000), pp. 73–87.

    Article  Google Scholar 

  2. V. Aizinger and C. Dawson, Discontinuous Galerkin methods for two-dimensional flow and transport in shallow water. to appear in Advances in Water Resources.

    Google Scholar 

  3. F. Alcrudo and P. Garcia-navarro, A high-resolution Godunov-type scheme in finite volumes for the 2d shallow-water equations, Int. J. Num. Meth. Fluids, 16 (1993), pp. 489–505.

    Article  MATH  Google Scholar 

  4. T. Arbogast, S. Bryant, C. Dawson, F. Saaf, and C. Wang, Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation, J. Comp. Appl. Math., 74 (1996), pp. 19–32.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Siokes equations, J. Comput. Phys., 131 (1997), pp. 267–279.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer Verlag, New York, 1994.

    MATH  Google Scholar 

  7. P. Castillo, B. Cockburn, I. Perugia, and D. Schotzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. to appear in SIAM J. Numer. Anal.

    Google Scholar 

  8. P. Castillo, B. Cockburn, D. Schotzau, and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. to appear in Math. Comp.

    Google Scholar 

  9. S. Chippada, C. Dawson, M. Martinez, and M.F. Wheeler, A Godunov-type finite volume method for the system of shallow water equations, Comput. Meth. Appl. Mech. Engrg., 151 (1998), pp. 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Cockburn and C. Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, Tech. Rep. 99-27, Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, August 1999.

    Google Scholar 

  11. B. Cockburn, S. Hou, and C.W. Shu, TVB Runqe-Kutta local project ion discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp., 54 (1990), pp. 545–581.

    MathSciNet  MATH  Google Scholar 

  12. B. Cockburn, G. Karniadakis, and C. Shu, The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods, B. Cockburn, G. Karniadakis, and C. Shu, eds., Vol. 11, Springer-Verlag, Berlin, 2000, pp. 3–50.

    Chapter  Google Scholar 

  13. B. Cockburn, S.Y. Lin, and C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservations laws III: One dimensional systems, J. Comput. Phys., 84 (1989), pp. 90–113.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Cockburn and C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservations laws II: General framework, Math. Comp., 52 (1989), pp. 411–435.

    MathSciNet  MATH  Google Scholar 

  15. —, The Runge-Kutta local projection p1-discontinuous Galerkin method for scalar conservations laws, M2AN, 25 (1991), pp. 337–361.

    MathSciNet  MATH  Google Scholar 

  16. —, The local discontinuous Galerkin method for time dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440–2463.

    Article  MathSciNet  MATH  Google Scholar 

  17. —, TVB Runge-Kutta discontinuous Galerkin finite element method for conservations laws V: Multidimensional systems, J. Comput. Physics, 141 (1998), pp. 199–224.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Dawson and J. Proft, The local discontinuous Galerkin method with penalties for parabolic problems. to appear in Numerical Methods for Partial Differential Equations.

    Google Scholar 

  19. C.N. Dawson, Godunov-mixed methods for advective flow problems in one space dimension, SIAM J. Num. Anal., 28 (1991), pp. 1282–1309.

    Article  MATH  Google Scholar 

  20. H.-J.G. Diersch, Shock-capturing finite-element technique for unsaturated-saturated flow and transport problems, in Proceedings of the 12th International Conference on Computational Methods in Water Resources, vol. 1, Computational Mechanics Publications, 1998, pp. 207–214.

    Google Scholar 

  21. L. Durlovsky, B. Engquist, and S. Osher, Triangle based adaptive stencils for the solution of hyperbolic conservation laws, J. Comp. Physics, 98 (1992), pp. 64–73.

    Article  Google Scholar 

  22. C. Gallo and G. Manzini, 2-D numerical modeling of bioremediation in heterogeneous saturated soils, Transport in Porous Media, 31 (1998), pp. 67–88.

    Article  Google Scholar 

  23. —, Mixed finite element/volume approach for solving biodegradation transport in groundwater, Int. J. Numer. Meth. Fluids, 26 (1998), pp. 533–556.

    Article  MATH  Google Scholar 

  24. A.T. Ippen, Mechanics of supercritical flow, Trans. ASCE, 116 (1951), pp. 268–295.

    Google Scholar 

  25. R.J. Leveque, Numerical Methods for Conservation Laws, Birkhauser, Basel, 1992.

    Google Scholar 

  26. S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217–235.

    Article  MathSciNet  MATH  Google Scholar 

  27. R.A. Luettich, J.J. Westerink, and N.W. Scheffner, Adcirc: An advanced three-dimensional circulation model for shelves, coasts and estuaries, tech. rep., U. S. Army Corps of Engineers, Washington, DC, 20314-1000, December 1991.

    Google Scholar 

  28. H.K. Rhee, R. Aris, and N.R. Amundson, First-Order Partial Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

    MATH  Google Scholar 

  29. C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp, 439–47l.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Siegel, R. Mose, P. Ackerer, and J. Jaffre, Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements, Int. J. Numer. Meth. Fluids, 24 (1997), pp. 595–613.

    Article  MathSciNet  MATH  Google Scholar 

  31. W.J. Weber, P.M. Mcginley, and L.E. Katz, Sorption phenomena in subsurface systems: Concepts, models and effect s on contaminant fate and transport, Water Res., 25 (1991), pp. 499–528.

    Article  Google Scholar 

  32. T. Weiyan, Shallow Water Hydrodynamics, Vol. 55 of Elsevier Oceanography Series, Elsevier, Amsterdam, 1992.

    Google Scholar 

  33. M. Yu and D.E. Dougherty, FCT model of contaminant transport on unstructured meshes, in Proceedings of the 12th International Conference on Computational Methods in Water Resources, Vol. 1, Computational Mechanics Publications, 1998, pp. 199–206.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Dawson, C., Aizinger, V. (2002). The Local Discontinuous Galerkin Method for Advection-Diffusion Equations Arising in Groundwater and Surface Water Applications. In: Chadam, J., Cunningham, A., Ewing, R.E., Ortoleva, P., Wheeler, M.F. (eds) Resource Recovery, Confinement, and Remediation of Environmental Hazards. The IMA Volumes in Mathematics and its Applications, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0037-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0037-3_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6553-5

  • Online ISBN: 978-1-4613-0037-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics