Skip to main content

Soil Carbon Turnover

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 166))

Abstract

The net carbon balance of forests is the small difference between very large fluxes of carbon uptake (via photosynthesis) and carbon loss (via respiration). If carbon uptake by forest vegetation exceeds C loss by vegetation and soils, the forest is a net sink of atmospheric carbon. Currently, regrowing temperate forest ecosystems of the eastern United States are storing C (Goulden et al. 1996; Greco and Baldocchi 1996; Hollinger et al. 1999; Curtis et al. 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burchuladze AA, Chudy M, Eristavi IV, Pagava SV, Povinec P, Sivo A, Togonidze GI (1989) Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31:771–776.

    Google Scholar 

  • Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002). Biometric and eddy-covariance based estimates of ecosystem carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19.

    Article  Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179.

    Article  PubMed  CAS  Google Scholar 

  • Edwards NT, Harris WF (1977) Carbon cycling in a mxed deciduous forest floor. Ecology 58:431–437.

    Article  CAS  Google Scholar 

  • Edwards NT, Johnson DW, McLaughlin SB, Harris WR (1989) Carbon dynamics and productivity. In Johnson DW, VanHook RI (Eds) Analysis of biogeochemical cycling processes in Walker Branch Watershed. Springer Verlag, New York, pp 197–232.

    Chapter  Google Scholar 

  • Fernandez IJ, Rustad LE, Lawrence GB (1993) Estimating total soil mass, nutrient content, and trace metals in soils under a low elevation spruce-fir forest. Can J Soil Sci 73:317–328.

    Article  CAS  Google Scholar 

  • Gaudinski JB (2001) Belowground carbon cycling in three temperate forests of the eastern United States. Doctoral Dissertation. University of California, Irvine, California.

    Google Scholar 

  • Gaudinski JB, Trumbore SE, Erickson EA and Zheng S (2000) Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69.

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance—Methods and a critical evaluation of accuracy. Global Change Biol 2:169–182.

    Article  Google Scholar 

  • Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biol 2:183–197.

    Article  Google Scholar 

  • Hamburg SP (1984) Effects of forest growth on soil nitrogen and organic matter pools following release from subsistence agriculture. In Stone EL (Ed) Forest soils and treatment impacts. The University of Tennessee, Knoxville, Tennessee, pp 145–158.

    Google Scholar 

  • Hesshaimer V, Heimann M, Levin I (1994) Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. J Exp Bot 43:1111–1119.

    Google Scholar 

  • Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT (1999) Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biol 5:891–902.

    Article  Google Scholar 

  • Hua Q, Barbetti M, Worbes M, Head J, Levchenko VA (1999) Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. Iawa J 20:261–283.

    Google Scholar 

  • Huntington TG, Johnson CE, Johnson AH, Siccama TG, Ryan DF (1989) Carbon, organic matter, and bulk density relationships in a forested spodosol. Soil Sci 148:380–386.

    Article  CAS  Google Scholar 

  • Johnson DW, Henderson GS, Todd DE (1988) Changes in nutrient distribution in forests and soils of Walker Branch Watershed, Tennessee, over an eleven-year period. Biogeochemistry 5:275–293.

    Article  CAS  Google Scholar 

  • Joslin JD, Wolfe MH (1999) Effects of minirhizotron installation disturbance upon root observation data. Soil Sci Soc Amer J 63:218–221.

    Article  CAS  Google Scholar 

  • Lal R, Follett RF, Kimble J, Cole CV (1999) Managing US cropland to sequester carbon in soil. J Soil Water Conserv 54:374–381.

    Google Scholar 

  • Levin I, Hesshaimer V (2000) Radiocarbon—A unique tracer of the global carbon cycle dynamics. Radiocarbon 42:69–80.

    CAS  Google Scholar 

  • Levin I, Kromer B (1997) Twenty years of atmospheric (CO2)—C-14 observations at Schauinsland Station, Germany. Radiocarbon 39:205–218

    CAS  Google Scholar 

  • Linick TW (1975) Uptake of bomb-produced carbon-14 by the Pacific Ocean. Ph.D. Thesis. University of California San Diego, California.

    Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740.

    Article  CAS  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: Processes and potential. Global Change Biol 6:317–327.

    Article  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469.

    Article  PubMed  CAS  Google Scholar 

  • Trettin CC, Johnson DW, Todd DE (1999) Forest nutrient and carbon pools at Walker Branch Watershed: Changes during a 21-year period. Soil Sci Soc Am J 63:1436–1448.

    Article  CAS  Google Scholar 

  • Trumbore SE (1993) Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochem Cycles 7:275–290.

    Article  CAS  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411.

    Article  Google Scholar 

  • Trumbore SE, Davidson EA, Decamargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochem Cycles 9:515–528.

    Article  CAS  Google Scholar 

  • Trumbore S, Gaudinski JB, Hanson PJ, Southon JR (2002) A whole-ecosystem carbon-14 label in a temperate forest. EOS 83:265,267–268.

    Article  Google Scholar 

  • Vogel JS (1992) A rapid method for preparation of biomedical targets for AMS. Radiocarbon 34:344–350.

    Google Scholar 

  • Wilson KB, Baldocchi DD (2001) Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern United States. J Geophys Res 106(D24):34167–34178.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gaudinski, J.B., Trumbore, S.E. (2003). Soil Carbon Turnover. In: Hanson, P.J., Wullschleger, S.D. (eds) North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0021-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0021-2_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6506-1

  • Online ISBN: 978-1-4613-0021-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics