Skip to main content

Soil Respiration and Litter Decomposition

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 166))

Abstract

Emissions of CO2 from the organic and mineral soil horizons into the atmosphere are considered a good representation of soil respiration (R soil) when the diffusion-driven losses to the atmosphere are at equilibrium with the biological rates of CO2 production (Hanson et al. 2000). R soil is the net effect of the biological activity of autotrophic roots and associated rhizosphere organisms plus the mineral soil heterotrophic activity of bacteria, fungi, and soil fauna. Whereas the activity of soil heterotrophic organisms is proportionate to the decomposition of soil carbon, CO2 lost from root and rhizosphere activity is a function of the consumption of organic compounds supplied by aboveground organs of plants (Horwath et al. 1994). Notwithstanding the complex nature of the sources of CO2 contributing to it, R soil represents a good measure of the collective response of root and soil biological activity to environmental conditions (Edwards et al. 1970; Hanson et al. 2000). Because soil respiration is a very large fraction of gross primary productivity (Curtis et al., 2002), its quantification must be a high priority in any attempt to establish carbon budgets for ecosystems (see Chapter 22, this volume).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Mellilo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269.

    Article  CAS  Google Scholar 

  • Amthor JS (1996) Models of plant growth costs and their application to trees in Walker Branch Watershed. UCRL-AR-125547. Lawrence Livermore National Laboratory, Livermore, California.

    Google Scholar 

  • Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley Respiration paradigms: 30 years later. Ann Bot 86:1–20.

    Article  CAS  Google Scholar 

  • Andersen JM (1973) Carbon dioxide evolution from two temperate deciduous woodland soils. J Appl Ecol 10:361–378.

    Article  Google Scholar 

  • Andersen JM (1992) Responses of soils to climate change. Adv Ecol Res 22:163–210.

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25.

    Article  CAS  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572.

    Article  CAS  Google Scholar 

  • Brumme R (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps HI. Environmental regulation of soil respiration and nitrous oxide emissions along a microclimatic gradient. Plant Soil 168–169: 593–600.

    Article  Google Scholar 

  • Castelle AJ, Galloway JN (1990) Carbon dioxide dynamics in acid forest soils in Senandoah National Park, Virginia. Soil Sci Soc Amer J 54:252–257.

    Article  Google Scholar 

  • Chambers LS (1998) Characterization of forest floor carbon dioxide efflux from three forest ecosystems in East Tennessee, USA. Masters thesis. The University of Tennessee, Knoxville, Tennessee.

    Google Scholar 

  • Coleman MD, Dickson RE, Isebrands JG (2000) Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations. Plant Soil 225:129–139.

    Article  CAS  Google Scholar 

  • Craine JM, Wedin DA, Chapin FS HI (1999) Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207:77–86.

    Article  Google Scholar 

  • Cromak K (1973) Litter production and decomposition in a mixed hardwood watershed and a white pine watershed at Coweeta Hydrologie Station, North Carolina. Ph.D. dissertation. University of Georgia, Athens, Georgia.

    Google Scholar 

  • Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometrie and eddy-covariance-based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19.

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol 4:217–227.

    Article  Google Scholar 

  • Dörr H, Miinnich KO (1987) Annual variation in soil respiration in selected areas of the temperate zone. Tellus 39B:114–121.

    Article  Google Scholar 

  • Edwards CA, Reichle DE, Crossley DA Jr. (1970) The role of soil invertebrates in turnover of organic matter and nutrients. In Reichle DE (Ed) Analysis of temperate forest ecosystems. Springer-Verlag, New York, pp 147–172.

    Google Scholar 

  • Edwards NT (1975) Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci Soc Amer J 39:361–365

    Article  CAS  Google Scholar 

  • Edwards NT, Harris WF (1977) Carbon cycling in a mixed deciduous forest floor. Ecology 58:431–437.

    Article  CAS  Google Scholar 

  • Edwards NT, Ross-Todd BM (1983) Soil carbon dynamics in a mixed deciduous forest following clear-cutting with and without residue removal. Soil Sci Soc Amer J 47:1014–1021.

    Article  CAS  Google Scholar 

  • Edwards NT, Sollins P (1973) Continuous measurement of carbon dioxide evolution from pardoned forest floor components. Ecology 54:406–412.

    Article  CAS  Google Scholar 

  • Edwards NT, Johnson DW, McLaughlin SB, Harris WF (1989) Carbon dynamics and productivity. In Johnson DW, Van Hook RI (Eds), Analysis of biogeochemical cycling processes in Walker Branch Watershed. Springer-Verlag, New York, pp 197–232.

    Chapter  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999a) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56:289–295.

    Article  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999b) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Ann For Sci 56:221–226.

    Article  Google Scholar 

  • Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–165.

    Article  CAS  Google Scholar 

  • Fassnacht KS, Gower ST (1999) Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in north central Wisconsin. Biogeochemistry 45:265–284.

    Google Scholar 

  • Flanagan PW, VanCleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can J For Res 13:795–817.

    Article  CAS  Google Scholar 

  • Garrett HE, Cox GS (1973) Carbon dioxide evolution from the floor of an oak-hickory forest. Soil Sci Soc Amer J 37:641–644.

    Article  Google Scholar 

  • Garten CT Jr., Post WM III, Hanson PJ, Cooper LW (1999) Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry 45:115–145.

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Global Change Biol 6:751–765.

    Article  Google Scholar 

  • Giardina CP, Ryan MP (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie TJ, Kidd GE (1978) Sensing duration of leaf moisture retention using electrical impedance grids. Can J Plant Sci 58:179–187.

    Article  Google Scholar 

  • Green RN, Trowbridge RL, Klinka K (1993) Towards a taxonomic classification of humus forms. Forest Science Monograph 29.

    Google Scholar 

  • Society of American Foresters, Bethesda, Maryland. Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE (1993) Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol 13:1–15.

    PubMed  Google Scholar 

  • Hanson PJ., Chambers MLS, Riggs JS, Misek TL, Stringfellow JB (1996) Litter CO2 Efflux: Daily Dynamics from Field Measurements and Model Extrapolations. Agronomy abstracts. Agronomy Society of America, Madison, Wisconsin, p 300.

    Google Scholar 

  • Hanson PJ, Todd DE, Huston MA, Joslin JD, Croker J, Augé RM (1998) Description and field performance of the Walker Branch Throughfall Displacement Experiment: 1993–1996. ORNL/TM-13586. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Book  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT Jr., Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48:115–146.

    Article  CAS  Google Scholar 

  • Hanson PJ, Todd DE, Amthor JS (2001) A six year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiol 21: 345–358.

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792.

    Article  PubMed  Google Scholar 

  • Horwath WR, Pregitzer KS, Paul EA (1994) 14C allocation in tree-soil systems. Tree Physiol 14:1163–1176.

    PubMed  Google Scholar 

  • Janssens IA, Meiresonne L, Cuelemans R (2000) Mean soil CO2 efflux from a mixed forest: temporal and spatial integration. In Ceulemans R, Veroustraete F, Gond V, Van Rensbergen JBHF (Eds) Forest ecosystem modelling, upscaling, and remote sensing. Academic Publishing, The Hague, The Netherlands, pp 19–31.

    Google Scholar 

  • Jansssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol 7:269–278.

    Article  Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306.

    Article  CAS  Google Scholar 

  • Johnson DW, Hanson PJ, Todd DE (2002) The effects of throughfall manipulation on soil solution chemistry and leaching in a deciduous forest. J Environ Qual 31:204–216.

    Article  PubMed  CAS  Google Scholar 

  • Joslin JD, Wolfe MH (1998) Impacts of long-term water input manipulations on fine root production and mortality in mature hardwood forests. Plant Soil 204:165–174.

    Article  CAS  Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of shifting water regimes on forest root systems. New Phytol 147: 117–129.

    Article  Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2001) Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant Soil 228:201–212.

    Article  Google Scholar 

  • Kelliher FM, Lloyd J, Arneth A, Lühker B, Byers JN, McSeveny TM, Milukova I, Grigoriev S, Panfyorov M, Soatchev A, Varlargin A, Ziegler W, Bauer G, Wong S-C, Schultze E-D (1999) Carbon dioxide efflux density from the floor of a central Siberian pine forest. Agric For Meteorol 94:217–232.

    Article  Google Scholar 

  • Kelly JM, Beauchamp JJ (1987) Mass loss and nutrient changes in decomposing upland oak and mesic-hardwood leaf litter. Soil Sci Soc Amer J 51:1616–1622.

    Article  Google Scholar 

  • Keith H, Jacobsen KL, Raison RJ (1997) Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190:127–141.

    Article  CAS  Google Scholar 

  • Kirita H (1971) Studies of soil respiration in warm-temperate evergreen broadleaf forests of southwestern Japan. Jpn J Ecol 21:230–244.

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760.

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51.

    Article  CAS  Google Scholar 

  • Kuperman RG (1999) Litter decomposition and nutrient dynamics in oak-hickory forests along a historic gradient of nitrogen and sulfur deposition. Soil Biol Biochem 31:237–244.

    Article  CAS  Google Scholar 

  • Larkin RP, Kelly JM (1987) Influence of elevated ecosystem S levels on litter decomposition and mineralization. Water Air Soil Pollut 34:415–428.

    Article  CAS  Google Scholar 

  • Law BE, Baldocchi DD, Anthoni PM (1999) Below-canopy and soil CO2 fluxes in ponderosa pine forest. Agric For Meteorol 94:171–188.

    Article  Google Scholar 

  • Longdoz B, Yernaux M, Aubinet M (2000) Soil CO2 efflux measurements in a mixed forest: Impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biol 6:907–917.

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275.

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimatic and lignin control of litter decomposition rates. Ecology 59:465–472.

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999) Litter decomposition rates in Canadian forests. Global Change Biol 5:75–82.

    Article  Google Scholar 

  • Nakane K (1975) Dynamics of soil organic matter in different parts on a slope under evergreen oak forest. Jpn J Ecol 25:206–216.

    Google Scholar 

  • Nakane K (1980) Comparative studies of cycling of soil organic carbon in three primeval moist forests. Jpn J Ecol 30:155–172.

    Google Scholar 

  • Nay SM, Bormann BT (2000) Soil carbon changes: Comparing flux monitoring and mass balance in a box lysimeter experiment. Soil Sci Soc Amer J 64:943–948.

    Article  CAS  Google Scholar 

  • Norman JM, Kucharik CJ, Gower ST, Baldocchi DD, Crill PM, Rayment M, Savage K, Striegl RG (1997) A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J Geophys Res 102:28771–28777.

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Article  Google Scholar 

  • O’Neill EG, Norby RJ (1996) Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. In Koch GW, Mooney HA (Eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 87–103.

    Chapter  Google Scholar 

  • O’Neill EG, Johnson DW, Ledford J, Todd DE (2003) Acute seasonal drought does not permanently alter mass loss and nitrogen dynamics during decomposition of red maple (Acer rubrum L.) litter. Global Change Biol 9: 117–123.

    Article  Google Scholar 

  • Pastor J, Post WM (1985) Development of a linked forest productivity-soil process model. ORNL/TM-9519. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: A quantitative approach. J Theor Biol 45:339–377.

    Article  PubMed  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99.

    CAS  Google Scholar 

  • Reiners WA (1968) Carbon dioxide evolution from the floor of three Minnesota forests. Ecology 49:471–483.

    Article  Google Scholar 

  • Soil Science Society of America [SSSA] (1997) Glossary of soil science terms 1996. Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Sommers LE, Gilmour CM, Wildung RE, Beck SM (1981) The effect of water potential on decomposition processes in soils. In Water potential relations in soil microbiology. Soil Science Society of America, Madison, Wisconsin, pp 97–117.

    Google Scholar 

  • Tesarova M, Gloser J (1976) Total CO2 output from alluvial soils with two types of grassland communities. Pedobiologia 16:364–372.

    Google Scholar 

  • Toland DE, Zak DR (1994) Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Can J For Res 24:1711–1716.

    Article  Google Scholar 

  • Topp GC, Davis JL (1985) Measurement of soil water content using time-domain reflectometry (TDR): A field evaluation. Soil Sci Soc Am J 49:19–24.

    Article  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865.

    Article  PubMed  CAS  Google Scholar 

  • Van Cleve K, Sprague D (1971) Respiration rates in the forest floor of birch and aspen stands in interior Alaska. Arctic Alpine Res 3:17–26.

    Article  Google Scholar 

  • Vertreg N, Penning de Vries FWT (1987) A rapid method for determining the efficiency of biosynthesis of plant biomass. J Theor Biol 128:109–119.

    Article  Google Scholar 

  • Virzo De Santo A, Alfani A, Sapio S (1976) Soil metabolism in beech forests of Monte Taburno (Campania Apennines). Oikos 27:144–152.

    Article  CAS  Google Scholar 

  • Weber MG (1990) Forest soil respiration after cutting and burning in immature aspen ecosystems. For Ecol Manage 31:1–14.

    Article  Google Scholar 

  • Wessman CA, Aber JD, Peterson DL, Melillo JM (1988) Foliar analysis using near infrared reflectance spectroscopy. Can J For Res 18:6–11.

    Article  Google Scholar 

  • Witkamp M (1966) Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47:194–201.

    Article  Google Scholar 

  • Wilson KB, Hanson PJ, Baldocchi DD (2000) Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agric For Meteorol 102:83–103.

    Article  Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2001) Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ 24:571–583.

    Article  Google Scholar 

  • Woodwell GM, Botkin DB (1970) Metabolism of terrestrial ecosystems by gas exchange techniques: The Brook-haven approach. In Reichle DE (Ed) Analysis of temperate forest ecosystems. Springer-Verlag, New York, pp 70–85.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanson, P.J., O’Neill, E.G., Chambers, M.L.S., Riggs, J.S., Joslin, J.D., Wolfe, M.H. (2003). Soil Respiration and Litter Decomposition. In: Hanson, P.J., Wullschleger, S.D. (eds) North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0021-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0021-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6506-1

  • Online ISBN: 978-1-4613-0021-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics