Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

The responses of liquids and solids to applied forces depend on time through the existence of viscosity. At sufficiently short times, liquids behave elastically, having insufficient time to flow. That is, they behave as if they were solid. Conversely, solids behave elastically at short times, but they flow at sufficiently long times, depending on how much force is applied to them. That is, they behave as if they were liquid. Between the two extremes lies plastic matter. Inside a plastic solid are small tubes (cores of dislocation lines) within which sliding can occur. This sliding is resisted by liquid-like viscosity and by fluctuating internal forces which cause energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Taylor and M.H. Rice, “Elastic-Plastic Properties of Iron,” J. Appl. Phys. 34, p. 364 (1963).

    Article  ADS  Google Scholar 

  2. J.W. Taylor, “Dislocation Dynamics and Dynamic Yielding,” J. Appl. Phys. 36, p. 3146 (1965).

    Article  ADS  Google Scholar 

  3. P.P. Gillis and J.J. Gilman, “Dynamical Dislocation Theory of Crystal Plasticity. I. The Yield Stress,” J. Appl. Phys. 36, p. 3370 (1965).

    Article  ADS  Google Scholar 

  4. J.J. Gilman, “Dynamic Criteria for Crack Nucleation and Growth,” in Proc. First Internat. Conf. Frac., Vol. 2 (ed. T Yokobori) Tohoku University, Sendai Japan. p. 733 (1966).

    Google Scholar 

  5. P.P. Edwards, T.V. Ramakrishnan, and C.N.R. Rao, “Metal-Insulator Transitions: A Perspective,” in Metal-Insulator Transitions Revisited (eds. P.P. Edwards and C.N.R. Rao), Taylor & Francis, London, p. xv (1995).

    Google Scholar 

  6. J.J. Gilman, “Chenlical Reactions at Detonation Fronts in Solids,” Phil. Mag. B 71, p. 1057 (1995).

    Google Scholar 

  7. C. Zener, Elasticity and Anelasticity in Metals, Univ. Chicago Press, Chicago, (1948).

    Google Scholar 

  8. S.P. Timoshenko, History of the Strength of Materials, Dover Publications, New York, (1983).

    Google Scholar 

  9. T.E. Tietz and J.E. Dorn, “The Effect of Strain Histories on the Work Hardening of Metals,” in Cold Working of Metals, American Society for Metals, Cleveland, Ohio, p. 163, (1949)

    Google Scholar 

  10. J.H. Hollomon and L.D. Jaffe, Ferrous Metallurgical Design, J. Wiley & Sons, New York, (1947).

    Google Scholar 

  11. [11] J.J. Gilman and W.G. Johnston, “Dislocations in Lithium Fluoride Crystals,” in Solid State Physics - Vol. 13 (ed. F. Seitz and W. Turnbull), Academic Press, New York, p. 147 (1962).

    Google Scholar 

  12. J.J. Gilman, “Mechanism of the Koehler Dislocation Multiplication Mechanism,” Phil. Mag. A 76, p, 329, (1997).

    Article  ADS  Google Scholar 

  13. M.B. Bever, D.L. Holt, and A.L. Titchener, Progr. Mat. Sci. 17, p. 1, (1973).

    Google Scholar 

  14. G.H. Wannier, Statistical Physics, J. Wiley & Sons, New York, Chap. 22, (1966).

    MATH  Google Scholar 

  15. H.S. Chen, J.J. Gilman, and A.H. Head, “Dislocation Multipoles and Their Role in Strain-Hardening,” J. Appl. Phys. 35, p. 2502, (1964).

    Google Scholar 

  16. G.I. Taylor, “The Testing of Materials at High Rates of Loading”—The James Forest Lecture, Jour. Institution of Civil Eng., #8, October 1945-46, p. 486.16, (1946).

    Google Scholar 

  17. K.A. Rakhmatulin, “Propagation of a Wave of Unloading,” Appl. Math. & Mech 9, p. 91 (1945).

    MathSciNet  MATH  Google Scholar 

  18. T. von Karman and P. Duwez, “Propagation of Plastic Deformation in Solids,” J. Appl. Phys. 21, p. 987 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J.J. Gilman, “The Plastic Wave Myth,” in Shock Compression of Condensed Matter—1991 (ed., S.C. Schmidt, J.J. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science Publishers B.V., New York, p. 387 (1992).

    Google Scholar 

  20. P. Grassia, “Dissipation, Fluctuations, and Conservation Laws,” Amer. J. Phys. 69, p. 113 (2001).

    Article  ADS  Google Scholar 

  21. M. Parrinello and A. Rahman, “Strain Fluctuations and Elastic Constants, J. Chem. Phys. 76, p. 2662 (1982).

    Article  ADS  Google Scholar 

  22. M.C. Lea, “Disruption of the Silver Halide Molecule by Mechanical Force,” Phil. Mag. 34 (5th Series), p. 46 (1892).

    Google Scholar 

  23. J.J. Gilman, “Shear-induced Metallization,” Phil. Mag. B 67, p. 207, (1993).

    Article  Google Scholar 

  24. [24] P.W. Bridgman, “Effects of High Shearing Stress Combined with High Hydrostatic Pressure,” Phys. Rev. 48, P. 825 (1935).

    Article  ADS  Google Scholar 

  25. J.J. Gilman, “Shear-induced Chemical Reactivity,” in Metal-insulator Transition Revisited, (ed. P.P. Edwards and C.N.R. Rao), Taylor & Francis, London, p.269 (1995).

    Google Scholar 

  26. J.J. Gilman, “Mechanism of Shear-induced Metallization,” Czech J. Phys. 45, p. 913 (1995).

    Article  ADS  Google Scholar 

  27. M.M. Kuklija and A.B. Kunz, “Electronic Structure of Molecular Crystals Containing Edge Dislocations,” J. Appl. Phys. 89, p. 4962 (2001).

    Article  ADS  Google Scholar 

  28. L.M. Barker and R.E. Hollenbach, Rev. Sci. Instr. 36, p. 1617 (1965).

    Article  ADS  Google Scholar 

  29. J.J. Gilman, “Plasmons at Shock Fronts,” Phil. Mag. B 79, p. 643 (1999).

    ADS  Google Scholar 

  30. J.J. Gilman, “The Limiting Speeds of Dislocations,” Met. & Mat. Trans. A, 31A, p. 811 (2000).

    Google Scholar 

  31. P. Gumbsch and H. Gao, Science 283, p. 965 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gilman, J.J. (2003). Responses of Condensed Matter to Impact. In: Horie, Y., Davison, L., Thadhani, N.N. (eds) High-Pressure Shock Compression of Solids VI. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0013-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0013-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6554-2

  • Online ISBN: 978-1-4613-0013-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics