Advertisement

What is a Shock Wave? —The View from the Atomic Scale

  • Brad Lee Holian
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

It is easy to say that everything starts at the time and distance scale of atoms. Strong shock waves provide the most appropriate conditions under which to study processes at the atomistic level on the computer. In the last three decades, molecular-dynamics (MD) simulations have been applied to shock waves in gases, liquids, and solids. In the case of solids, the problem becomes more complicated because of defect structures, which have an intrinsically larger length scale than that of the mean atomic spacing. In sufficiently strong shocks, defects can be produced homogeneously. For weak shocks, they can be triggered as the wave interacts Witll pre-existing defects that serve as inhomogeneous nucleation sites.

Keywords

Shock Wave Shock Front Atomic Scale Atomistic Simulation Distance Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    (a) A. Paskin and G.J. Dienes, J. Appl. Phys. 43, p. 1605 (1972)ADSCrossRefGoogle Scholar
  2. (b).
    D.H. Tsai and R.A. MacDonald, in Proceedings of the 1976 International Conference “Computer Simulations for Materials Applications,” Gaithersburg, MD, 1976 (eds. R.J. Arsenault et al.) Nuclear Metallurgy 20, p. 489 (1976)Google Scholar
  3. (c).
    B.L. Holian and G.K. Straub, Phys. Rev. Letters 43, p. 1598 (1979)ADSCrossRefGoogle Scholar
  4. (d).
    V.Y. Klimenko and A.N. Dremin, in Detonatsiya, Chernogolovka, (eds. O.N. Breusov et al.) Akademiya Nauk, Moscow, p.79 (1978).Google Scholar
  5. (e).
    B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Phys. Rev. A 22, p. 2798 (1980)ADSCrossRefGoogle Scholar
  6. (f).
    B.L. Holian, Phys. Rev. A 37, p. 2562 (1988)ADSCrossRefGoogle Scholar
  7. (g).
    B.L. Holian, Shock Waves 5, p. 149 (1995)ADSCrossRefGoogle Scholar
  8. (h).
    B.L. Holian and P.S. Lomdahl, Science 280, p. 2085 (1998)ADSCrossRefGoogle Scholar
  9. (i).
    V.V. Zhakhovskii, S.V. Zybin, K. Nishihara, and S.I. Anisimov, Phys. Rev. Letters 83, p. 1175 (1999)ADSCrossRefGoogle Scholar
  10. (j).
    T.C. Germann, B.L. Holian, P.S. Lomdahl, Phys. Rev. Letters 84, p. 5351 (2000); B.L. Holian, T.C. Germann, P.S. Lomdahl, J.E. Hammerberg, and R. Ravelo, in Shock Compression of Condensed Matter—1999 (eds. M.D. Furnish et al.), American Institute of Physics, New York, p.35 (2000).Google Scholar
  11. [2]
    B.J. Alder and T.E. Wainwright, in International Symposium on Statistical Mechanical Theory of Transport Processes, Brussels, 1956 (ed. I. Prigogine) Interscience, New York, p.97 (1958); ibid., J. Chem. Phys. 27, p. 1208 (1957).Google Scholar
  12. [3]
    B.J. Alder and T.E. Wainwright, Phys. Rev. A 1, p. 18 (1970).ADSCrossRefGoogle Scholar
  13. [4]
    E.G.D. Cohen and W. Thirring, eds., The Boltzmann Equation, Springer-Verlag Vienna and New York, (1973).CrossRefGoogle Scholar
  14. [5]
    W.G. Hoover and W.T. Ashurst, Adv. Theor. Chem. 1, p. 1 (1975).Google Scholar
  15. [6]
    O.B. Firsov, Sov. Phys.-JETP 36, p. 1076 (1959).Google Scholar
  16. [7]
    B.L. Holian, A.F. Voter, N.J. Wagner, R.J. Ravelo, S.P. Chen, W.G. Hoover, C.G. Hoover, J.E. Hammerberg, and T.D. Dontje, Phys. Rev. A 43, p. 2655 (1991); B.L. Holian and R. Ravelo, Phys. Rev. B 51, p. 11275 (1995); see original EAM reference MS. Daw and MI. Baskes, Phys. Rev. B 29, p. 6443 (1984).ADSCrossRefGoogle Scholar
  17. [8]
    N.J. Wagner, B.L. Holian, and A.F. Voter, Phys. Rev. A 45, p. 8457 (1992).ADSCrossRefGoogle Scholar
  18. [9]
    G.K. Straub, B.L. Holian, and R.G. Petschek, Phys. Rev. B 19, p. 4049 (1979).ADSCrossRefGoogle Scholar
  19. [10]
    R. Ravelo, T.C. Germann, P.S. Lomdahl, and B.L. Holian, The Nature of Shock-Induced Plasticity: Comparison between NEMD and the Hugoniostat, in preparation.Google Scholar
  20. [11]
    Y. Mishin, M.J. Mew, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Phys. Rev. B 63 p. 224106 (2001).ADSCrossRefGoogle Scholar
  21. [12]
    D.M. Beazley and P.S. Lomdahl, Par. Comput. 20, p. 173 (1994); ibid., Par. Comput. 11, p. 230 (1997).CrossRefGoogle Scholar
  22. [13]
    K. Kadau, T.C. Germann, P.S. Lomdahl, and B.L. Holian, Shock-Induced Phase Transition in Single-Crystal Iron, in preparation.Google Scholar
  23. [14]
    D.W. Brenner, D.H. Robertson, M.L. Elert, and C.T. White, Phys. Rev. Letters 70, p. 2174 (1993).ADSCrossRefGoogle Scholar
  24. [15]
    T.C. Germann, J.-B. Maillet, B.L. Holian, and P.S. Lomdahl, Detonation Phenomena in a Model 2D and 3D Energetic Molecular Solid, in preparation.Google Scholar
  25. [16]
    A. Strachan, T. Cagin, and W.A. Goddard III, Phys. Rev. B 63, p. 060103 (2001).ADSCrossRefGoogle Scholar
  26. [17]
    S.V. Zybin, T.C. Germann, P.S. Lomdahl, and B.L. Holian, Steady Elastic Shock Waves, in preparation.Google Scholar
  27. [18]
    M.A. Mogilevsky, in Shock Waves and High Strain Rate Phenomena in Metals (eds. L.E. Murr and M.A. Meyers) Plenum, New York, p. 531 (1981).Google Scholar
  28. [19]
    J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P.S. Lomdahl, T.C. Germann, and B.L. Holian, Phys. Rev. E 63, p. 16121 (2001).ADSCrossRefGoogle Scholar
  29. [20]
    W.G. Hoover, Phys. Rev. Letters 42, p. 1531 (1979).ADSCrossRefGoogle Scholar
  30. [21]
    J.P. Hirth, R.G. Hoagland, B.L. Holian, and T.C. Germann, Acta mater. 47, p. 2409 (1999).CrossRefGoogle Scholar
  31. [22]
    T.C. Germann, K. Kadau, and B.L. Holian, Shock-Induced Phase Transition in Polycrystalline Iron, in preparation.Google Scholar
  32. [23]
    W.G. Hoover, Phys. Rev. Letters 42, p. 1531 (1979).ADSCrossRefGoogle Scholar
  33. [24]
    P.A. Rigg and Y.M. Gupta, Phys. Rev. B 63, 094112 (2001).ADSCrossRefGoogle Scholar
  34. [25]
    P.V. Makarov, Physical Mesomechanics 1, p. 57 (1998); K. Yano and Y. Horie, Phys. Rev. B 59, p. 13672 (1999).Google Scholar
  35. [26]
    J.D. Kress, S.R. Bickham, L.A. Collins, B.L. Holian, and S. Goedecker, Phys. Rev. Letters 83, p. 3896 (1999).ADSCrossRefGoogle Scholar
  36. [27]
    A. Loveridge-Smith et al., Phys. Rev. Letters, 86 p. 2349 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Brad Lee Holian

There are no affiliations available

Personalised recommendations