Skip to main content

What is a Shock Wave? —The View from the Atomic Scale

  • Chapter

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

It is easy to say that everything starts at the time and distance scale of atoms. Strong shock waves provide the most appropriate conditions under which to study processes at the atomistic level on the computer. In the last three decades, molecular-dynamics (MD) simulations have been applied to shock waves in gases, liquids, and solids. In the case of solids, the problem becomes more complicated because of defect structures, which have an intrinsically larger length scale than that of the mean atomic spacing. In sufficiently strong shocks, defects can be produced homogeneously. For weak shocks, they can be triggered as the wave interacts Witll pre-existing defects that serve as inhomogeneous nucleation sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) A. Paskin and G.J. Dienes, J. Appl. Phys. 43, p. 1605 (1972)

    Article  ADS  Google Scholar 

  2. D.H. Tsai and R.A. MacDonald, in Proceedings of the 1976 International Conference “Computer Simulations for Materials Applications,” Gaithersburg, MD, 1976 (eds. R.J. Arsenault et al.) Nuclear Metallurgy 20, p. 489 (1976)

    Google Scholar 

  3. B.L. Holian and G.K. Straub, Phys. Rev. Letters 43, p. 1598 (1979)

    Article  ADS  Google Scholar 

  4. V.Y. Klimenko and A.N. Dremin, in Detonatsiya, Chernogolovka, (eds. O.N. Breusov et al.) Akademiya Nauk, Moscow, p.79 (1978).

    Google Scholar 

  5. B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Phys. Rev. A 22, p. 2798 (1980)

    Article  ADS  Google Scholar 

  6. B.L. Holian, Phys. Rev. A 37, p. 2562 (1988)

    Article  ADS  Google Scholar 

  7. B.L. Holian, Shock Waves 5, p. 149 (1995)

    Article  ADS  Google Scholar 

  8. B.L. Holian and P.S. Lomdahl, Science 280, p. 2085 (1998)

    Article  ADS  Google Scholar 

  9. V.V. Zhakhovskii, S.V. Zybin, K. Nishihara, and S.I. Anisimov, Phys. Rev. Letters 83, p. 1175 (1999)

    Article  ADS  Google Scholar 

  10. T.C. Germann, B.L. Holian, P.S. Lomdahl, Phys. Rev. Letters 84, p. 5351 (2000); B.L. Holian, T.C. Germann, P.S. Lomdahl, J.E. Hammerberg, and R. Ravelo, in Shock Compression of Condensed Matter—1999 (eds. M.D. Furnish et al.), American Institute of Physics, New York, p.35 (2000).

    Google Scholar 

  11. B.J. Alder and T.E. Wainwright, in International Symposium on Statistical Mechanical Theory of Transport Processes, Brussels, 1956 (ed. I. Prigogine) Interscience, New York, p.97 (1958); ibid., J. Chem. Phys. 27, p. 1208 (1957).

    Google Scholar 

  12. B.J. Alder and T.E. Wainwright, Phys. Rev. A 1, p. 18 (1970).

    Article  ADS  Google Scholar 

  13. E.G.D. Cohen and W. Thirring, eds., The Boltzmann Equation, Springer-Verlag Vienna and New York, (1973).

    Book  Google Scholar 

  14. W.G. Hoover and W.T. Ashurst, Adv. Theor. Chem. 1, p. 1 (1975).

    Google Scholar 

  15. O.B. Firsov, Sov. Phys.-JETP 36, p. 1076 (1959).

    Google Scholar 

  16. B.L. Holian, A.F. Voter, N.J. Wagner, R.J. Ravelo, S.P. Chen, W.G. Hoover, C.G. Hoover, J.E. Hammerberg, and T.D. Dontje, Phys. Rev. A 43, p. 2655 (1991); B.L. Holian and R. Ravelo, Phys. Rev. B 51, p. 11275 (1995); see original EAM reference MS. Daw and MI. Baskes, Phys. Rev. B 29, p. 6443 (1984).

    Article  ADS  Google Scholar 

  17. N.J. Wagner, B.L. Holian, and A.F. Voter, Phys. Rev. A 45, p. 8457 (1992).

    Article  ADS  Google Scholar 

  18. G.K. Straub, B.L. Holian, and R.G. Petschek, Phys. Rev. B 19, p. 4049 (1979).

    Article  ADS  Google Scholar 

  19. R. Ravelo, T.C. Germann, P.S. Lomdahl, and B.L. Holian, The Nature of Shock-Induced Plasticity: Comparison between NEMD and the Hugoniostat, in preparation.

    Google Scholar 

  20. Y. Mishin, M.J. Mew, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Phys. Rev. B 63 p. 224106 (2001).

    Article  ADS  Google Scholar 

  21. D.M. Beazley and P.S. Lomdahl, Par. Comput. 20, p. 173 (1994); ibid., Par. Comput. 11, p. 230 (1997).

    Article  Google Scholar 

  22. K. Kadau, T.C. Germann, P.S. Lomdahl, and B.L. Holian, Shock-Induced Phase Transition in Single-Crystal Iron, in preparation.

    Google Scholar 

  23. D.W. Brenner, D.H. Robertson, M.L. Elert, and C.T. White, Phys. Rev. Letters 70, p. 2174 (1993).

    Article  ADS  Google Scholar 

  24. T.C. Germann, J.-B. Maillet, B.L. Holian, and P.S. Lomdahl, Detonation Phenomena in a Model 2D and 3D Energetic Molecular Solid, in preparation.

    Google Scholar 

  25. A. Strachan, T. Cagin, and W.A. Goddard III, Phys. Rev. B 63, p. 060103 (2001).

    Article  ADS  Google Scholar 

  26. S.V. Zybin, T.C. Germann, P.S. Lomdahl, and B.L. Holian, Steady Elastic Shock Waves, in preparation.

    Google Scholar 

  27. M.A. Mogilevsky, in Shock Waves and High Strain Rate Phenomena in Metals (eds. L.E. Murr and M.A. Meyers) Plenum, New York, p. 531 (1981).

    Google Scholar 

  28. J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P.S. Lomdahl, T.C. Germann, and B.L. Holian, Phys. Rev. E 63, p. 16121 (2001).

    Article  ADS  Google Scholar 

  29. W.G. Hoover, Phys. Rev. Letters 42, p. 1531 (1979).

    Article  ADS  Google Scholar 

  30. J.P. Hirth, R.G. Hoagland, B.L. Holian, and T.C. Germann, Acta mater. 47, p. 2409 (1999).

    Article  Google Scholar 

  31. T.C. Germann, K. Kadau, and B.L. Holian, Shock-Induced Phase Transition in Polycrystalline Iron, in preparation.

    Google Scholar 

  32. W.G. Hoover, Phys. Rev. Letters 42, p. 1531 (1979).

    Article  ADS  Google Scholar 

  33. P.A. Rigg and Y.M. Gupta, Phys. Rev. B 63, 094112 (2001).

    Article  ADS  Google Scholar 

  34. P.V. Makarov, Physical Mesomechanics 1, p. 57 (1998); K. Yano and Y. Horie, Phys. Rev. B 59, p. 13672 (1999).

    Google Scholar 

  35. J.D. Kress, S.R. Bickham, L.A. Collins, B.L. Holian, and S. Goedecker, Phys. Rev. Letters 83, p. 3896 (1999).

    Article  ADS  Google Scholar 

  36. A. Loveridge-Smith et al., Phys. Rev. Letters, 86 p. 2349 (2001).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holian, B.L. (2003). What is a Shock Wave? —The View from the Atomic Scale. In: Horie, Y., Davison, L., Thadhani, N.N. (eds) High-Pressure Shock Compression of Solids VI. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0013-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0013-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6554-2

  • Online ISBN: 978-1-4613-0013-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics