Skip to main content

Terrestrial Acidification at the K/T Boundary

  • Chapter
High-Pressure Shock Compression of Solids V

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

We focus here on geochemically constraining the production of acid during the KT impact. The potential importance of acid formation at the Cretaceous/Tertiary (K/T) boundary has been discussed by many authors (e.g., [2–7]). Fossil evidence (i.e., the survival of some species of calcareous plankton) for the lack of acidification of ocean surface waters has been cited by D’Hondt et al. [6], thus placing an important constraint on the total acid deposited in the oceans. Global surface cooling due to a decrease in solar insolation by an ejectaderived stratospheric dust layer, an idea originally proposed by Alvarez et al. [8], may have occurred on a decadal timescale as stratospheric SO2 was slowly converted to sulfuric acid aerosol [9–11]. Evaporite deposits at Chicxulub (e.g., [12]) provided the SO2 via devolatilization of anhydrite and gypsum. Numerical model estimates of the amount of SO2 liberated, based on laboratory hyper-velocity impact studies of anhydrite [13, 14], predict ~ 1 × 1016−1 × 1017 moles S were released [7]. Assuming complete oxidation of SO2 to sulfuric acid, this corresponds to ~12−20 × 1016 equivalents (eq) of acid. Zahnle [5] has estimated that ∼ 1 × 1015 moles of nitric acid were produced by shock heating of air during bolide and ejecta passage through the atmosphere, making nitric acid only 1–10 % of total strong acid production. Morgan et al. [15], by determining the diameter of the transient impact crater at Chicxulub, estimated that the bolide was the equivalent of the impact of a 12 km asteroid and that ~1 × 1016 mol SO2 were produced by the event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.E. Martin and J.D. Macdougall, Seawater Sr isotopes at the Cretaceous/Tertiary boundary, Earth Planet Sri. Lett 104, pp. 166–180 (1991).

    Article  ADS  Google Scholar 

  2. G.J. Retallack, Acid trauma at the Cretaceous-Tertiary boundary in Eastern Montana, GSA Today 6(5), pp. 1–7 (1996).

    Google Scholar 

  3. J.S. Lewis, H. Watkins, H. Hartman, and R.G. Prinn, Chemical consequences of major impact events on Earth, Geol. Soc. Am. Spec. Paper 190, pp. 215–221 (1982).

    Google Scholar 

  4. R.G. Prinn and B. Fegley, Bolide impacts, acid rain, and biospheric traumas, at the Cretaceous-Tertiary boundary, Earth Planet. Sci. Lett. 83, pp. 1-15 (1987).

    Google Scholar 

  5. K. J. Zahnle, Atmospheric chemistry by large impacts, Geol. Soc. Am. Sp. Paper 247, 271–288 (1990).

    Google Scholar 

  6. S. D’Hondt, M.E.Q. Pilson, H. Sigurdsson, A.K. Hanson, and S. Carey, Surface-water acidification and extinction at the Cretaceous-Tertiary boundary, Geology 22, pp. 483–486 (1994).

    Article  Google Scholar 

  7. K.O. Pope, K.H. Baines, A.C. Ocampo, and B.A. Ivanov, Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact, J. Geophys. Res. 102, pp. 21645–21664 (1997).

    Article  ADS  Google Scholar 

  8. L. Alvarez, W. Alvarez, F. Asaro, and H. V. Michel, Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science 208, pp. 1095–1108 (1980).

    Article  ADS  Google Scholar 

  9. R. Brett, The Cretaceous-Tertiary extinction: a lethal mechanism involving anhydrite target rocks, Geochim. Cosmochim. Acta 56, pp. 3603–3606 (1992).

    Article  ADS  Google Scholar 

  10. H. Sigurdsson, S. D’Hondt, and S. Carey, The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulphuric acid aerosol, Earth Planet. Sci. Lett. 109, pp. 543–559 (1992).

    Article  ADS  Google Scholar 

  11. K.O. Pope, K.H. Baines, A.C. Ocampo, and B.A. Ivanov, Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model, Earth Planet. Sci. Lett. 128, pp. 719–725 (1994).

    Article  ADS  Google Scholar 

  12. W.C. Ward, G. Keller, W. Stinnesbeck, and T. Adatte, Yucatan subsurface stratigraphy: Implications and constraints for the Chicxulub impact, Geology 23, pp. 873–876 (1995).

    Article  ADS  Google Scholar 

  13. W. Yang, T.J. Ahrens, and G. Chen, Shock vaporization of anhydrite and calcite and the effect on global climate from the K/T impact crater at Chicxulub, Lunar Planet. Sci. Conf. Abstracts XXVII, pp. 1473–1474 (1996).

    ADS  Google Scholar 

  14. S.C. Gupta, T.J. Ahrens, and W. Yang, Shock-induced vaporization of anhydrite and global cooling from the K/T impact, Earth Planet. Sci. Lett., in press (2001).

    Google Scholar 

  15. J. Morgan, M. Warner, and the Chicxulub Working Group, Size and morphology of the Chicxulub impact crater, Nature 390, pp. 472–476 (1997).

    Article  ADS  Google Scholar 

  16. J. Quade, L. Roe, P.G. DeCelles, and T.P. Ojha, The late Neogene 87Sr/86Sr record of lowland Himalayan rivers, Science 276, pp. 1828–1831 (1997).

    Article  Google Scholar 

  17. J. Hess, M.L. Bender, and J.G. Schilling, Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present, Science 231, pp. 979–984 (1986).

    Article  ADS  Google Scholar 

  18. J.D. Macdougall, Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary, Science 239, pp. 485–487 (1988).

    Article  ADS  Google Scholar 

  19. M.R. Palmer and J.M. Edmond, The strontium isotope budget of the modern ocean, Earth Planet. Sci. Lett. 92, pp. 11–26 (1989).

    Article  ADS  Google Scholar 

  20. J.D. Blum, C.P. Chamberlain, M.P. Hingston, C. Koeberl, L.E. Marin, B.C. Schuraytz, and V.L. Sharpton, Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures, Nature 364, pp. 325–327 (1993).

    Article  ADS  Google Scholar 

  21. J.D. O’Keefe and T.J. Ahrens, The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean and solid Earth, Geol. Soc. Am. Sp. Paper 190, pp. 103–120 (1982).

    Google Scholar 

  22. J.D. Blum and Y. Erel, A silicate weathering mechanism Unking increases in marine 87Sr/86Sr with global glaciation, Nature 373, pp. 415–418 (1995).

    Article  ADS  Google Scholar 

  23. D.W. Clow, M.A. Mast, T.D. Bullen, and J.T. Turk, Strontium 87/strontium 86 as a tracer of mineral weathering reactions and calcium sources in an alpine/subalpine watershed, Loch Vale, Colorado, Water. Resources Res. 33, pp. 1335–1351 (1997).

    Article  ADS  Google Scholar 

  24. D.L. Sparks, Environmental Soil Chemistry, Academic Press: San Diego (1995).

    Google Scholar 

  25. E.K. Miller, J.D. Blum, and A. J. Friedland, Determination of soil exchangeablecation loss and weathering rates using Sr isotopes, Nature 362, pp. 438–441 (1993).

    Article  ADS  Google Scholar 

  26. J.W. Murray, The Oceans, in Global Biogeochemical Cycles, Academic Press: London, p. 213 (1992).

    Google Scholar 

  27. W.H. Schlesinger, Biogeochemistry, An Analysis of Global Change, Academic Press: San Diego (1991).

    Google Scholar 

  28. J.D. O’Keefe and T.J. Ahrens, Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth, Nature 338, pp. 247–249 (1989).

    Article  ADS  Google Scholar 

  29. W.S. Wolbach, I. Gilmour, and E. Anders, Major wildfires at the Cretaceous/Tertiary boundary, Geol. Soc. Am. Spec. Paper 247, pp. 391–400 (1990).

    Google Scholar 

  30. E.K. Miller, J.A. Panek, A.J. Friedland, J. Kadlecek, and V.A. Mohnen, Atmospheric deposition to a high-elevation forest at Whiteface Mountain, New York, USA, Tellus 45B, pp. 209–227 (1993).

    ADS  Google Scholar 

  31. M.J. Bickle, The role of metamorphic decarbonation reactions in returning strontium to the silicate sediment mass, Nature 367, pp. 699–704 (1994).

    Article  ADS  Google Scholar 

  32. S.L. Brantley, J.T. Chesley and L.L. Stillings, Isotopic ratios and release of strontium measured from weathering feldspars, Geochim. Cosmochim. Acta 62, pp. 1493–1500 (1998).

    Article  ADS  Google Scholar 

  33. W. Alvarez, P. Claeys, and S.W. Kieffer, Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater, Science 269, pp. 930–935 (1995).

    Article  ADS  Google Scholar 

  34. P.H. Schultz and S. D’Hondt, Cretaceous-Tertiary (Chicxulub) impact angle and its consequences, Geology 24, pp. 963–967 (1996).

    Article  ADS  Google Scholar 

  35. P.H. Schultz, Effect of impact angle on vaporization, J. Geophys. Res. 101, pp. 21117–21136 (1996).

    Article  ADS  Google Scholar 

  36. D. E. Fastovsky, K. McSweeney, and L. D. Norton, Pedogenic development at the Cretaceous-Tertiary boundary, Garfield County, Montana, J. Sed. Petrol. 59, pp. 758–767 (1989).

    Google Scholar 

  37. A.R. Hildebrand, G.T. Penfield, D.A. Kring, M. Pilkington, Z.A. Camargo, S. Jacobsen, and W.V. Boynton, Geology 19, pp. 867–870 (1991).

    Article  ADS  Google Scholar 

  38. B. Mason (ed.), Handbook of Elemental Abundances in Meteorites, Gordon and Breach Science Publishers: New York (1971).

    Google Scholar 

  39. D.A. Kring, H.J. Melosh, and D.M. Hunten, Impact-induced perturbations of atmospheric sulfur, Earth Planet. Sci. Lett. 140, pp. 201–212 (1996).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lyons, J.R., Ahrens, T.J. (2003). Terrestrial Acidification at the K/T Boundary. In: Davison, L., Horie, Y., Sekine, T. (eds) High-Pressure Shock Compression of Solids V. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0011-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0011-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6552-8

  • Online ISBN: 978-1-4613-0011-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics