Skip to main content

Redistribution of Radiogenic Lead in Plagioclase during Shock Metamorphism

  • Chapter
  • 317 Accesses

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

It is well known that there was heavy meteoritic bombardment of the lunar surface around 3.9 Ga (lunar terminal cataclysm [1]), not only resulting in excavation of crustal rocks but also triggering mare basalt volcanism. Plagioclase is the main constituent of the lunar crust, which is considered a product of a primordial Moon-wide “magma ocean” [2], an outer layer that was partially molten to a depth of several hundred kilometers. Because of the key role of plagioclase in the U-Th-Pb systematics of lunar highland rocks and mare basalts, it is important to understand the mobility of volatile lead in plagioclase during shock metamorphism. Almost all of the samples recovered from the Apollo and Luna missions have experienced shock metamorphism. With increasing shock intensity, plagioclase converts to the isotropic glass, “maskelynite,” which is ubiquitously observed in highland rocks and mare basalts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Tera, D.A. Papanastassiou, and G.J. Wasserburg, Earth Planet. Sci. Lett. 22, p. 1, (1974).

    Article  ADS  Google Scholar 

  2. P.H. Warren, Ann. Rev. Earth Planet. Sci. 13, p. 201, (1985).

    Article  ADS  Google Scholar 

  3. L.T. Silver, in Proc. Apollo 11 Lunar Sci. Conf. (ed. A.A. Levinson), Pergamon Press, New York, p. 1533, (1970).

    Google Scholar 

  4. M. Tatsumoto, C.E. Hedge, R.J. Knight, D.M. Unruh, and B.R. Doe, in Apollo 15 Lunar Samples (ed. J.W. Chamberlain and C. Watkins), Lunar Science Institute, Houston, p. 391, (1972).

    Google Scholar 

  5. F. Tera and G.J. Wasserburg, Earth Planet. Sci. Lett. 14, p. 281, (1972).

    Article  ADS  Google Scholar 

  6. P.D. Nunes and M. Tatsumoto, Science 182, p. 916, (1973).

    Article  ADS  Google Scholar 

  7. W. Compston, I.S. Williams, and C. Meyer, in Stable Isotope Geochemistry: A Tribute to Samuel Epstein (ed. H.P. Taylor, J.R. O’Neil and I.R Kaplan) The Geochem. Soc. Spec. Publ. No. 3, The Geochemical Society, San Antonio, p. 473, (1991).

    Google Scholar 

  8. K. Misawa, M. Tatsumoto, G.B. Dalrymple, and K. Yanai, Geochim. Cosmochim. Acta 57, p. 4687, (1993).

    Article  ADS  Google Scholar 

  9. E.K. Jessberger and R. Ostertag, Geochim. Cosmochim. Acta 46, p. 1465, (1982).

    Article  ADS  Google Scholar 

  10. L.E. Nyquist, D.D. Bogard, D.H. Garrison, B.M. Bansal, H. Wiesmann, and C.-Y. Shib, LunarPlanet Sci. XXII, p. 985, (1991).

    ADS  Google Scholar 

  11. E.H. Cirlin and R.M. Housley, Proc. 8-th Lunar Sci. Conf. (ed. R.B. Merrill), Pergamon Press, Elmsford, NY, p. 3931, (1977).

    Google Scholar 

  12. P.H. Warren, Amer Min. 78, p. 360, (1993).

    ADS  Google Scholar 

  13. W.B. Simmons and E.W. Heinrich, Rare-earth pegmatites of the South Platte District, Colorado, Colorado Geological Survey, Denver, p. 131, (1980).

    Google Scholar 

  14. P.J. Modreski, in Colorado Pegmatites (ed. P.J. Modreski), Colorado Chapter, Friends of Mineralogy, Denver, p. 37, (1986).

    Google Scholar 

  15. R.B. Schaal, F. Hörz, T.D. Thompson, and J.F. Bauer, in Proc. 10 th Lunar Planet. Sci. Conf., (ed. R.B. Merrill), Pergamon Press, Elmsford, NY, p. 2547, (1979).

    Google Scholar 

  16. T. Sekine, M. Takahashi, and N. Setaka, J. Mat. Sci. 22, p. 3615, (1987).

    Article  ADS  Google Scholar 

  17. W. Todt, R.C. Cliff, A Hanser, and A. W. Hofmann, in Earth Processes: Reading the Isotopic Code (ed. A. Basu and S. R. Hart), American Geophysical Union, Washington, DC, p. 429, (1966).

    Google Scholar 

  18. K.R. Ludwig, USGS Open-File Rept. 88-542, United States Geological Survey, Washington, DC, (1989).

    Google Scholar 

  19. W. Compston, I.S. Williams, and C. Meyer, J. Geophys. Res. 89, p. B525, (1984).

    Article  ADS  Google Scholar 

  20. A.E. Saal, S.R. Hart, N. Shimizu, E.H. Hauri, and G.D. Layne, Science 282, p. 1481, (1998).

    Article  Google Scholar 

  21. M. Chen and A. El Goresy, Earth. Planet. Sci. Lett. 179, p. 489, (2000).

    Article  ADS  Google Scholar 

  22. T. Mikouchi, Antarct. Meteorite Res. 12, p. 151 (1999).

    ADS  Google Scholar 

  23. J.S. Stacey and J.D. Kramers, Earth Planet. Sci. Lett. 26, p. 207, (1975).

    Article  ADS  Google Scholar 

  24. D. Stöffler, A. Bischoff, V. Buchwald, and A.E. Rubin, in Meteorites and the Early Solar System (ed. J.F. Kerridge and M.S. Matthews), U. Arizona Press, Tucson, p. 165, (1988).

    Google Scholar 

  25. E.M. Otto, J. Electrochem. Soc. 113, p. 525, (1966).

    Article  Google Scholar 

  26. D. J. Cherniak, Contrib. Mineral. Petrol 120, p. 358, (1995).

    Google Scholar 

  27. D. J. Cherniak and E.B. Watson, Earth Planet. Sci. Lett. 113, p. 411, (1992).

    Article  ADS  Google Scholar 

  28. P.D. Spudis and G. Ryder, EOS Trans. AGU 66, p. 721, (1985).

    Article  ADS  Google Scholar 

  29. D. Stöffler, Lunar Planet. Sci. XXXI, p. 1170, (2000).

    ADS  Google Scholar 

  30. A. Yamaguchi and T. Sekine, Earth. Planet. Sci. Lett. 22, p. 1, (2000).

    Google Scholar 

  31. R. Ostertag, J. Geophys. Res. 88, p. B364, (1983).

    Article  ADS  Google Scholar 

  32. J.R Ashworth, Earth Planet. Sci. Lett. 73, p. 17, (1985).

    Article  ADS  Google Scholar 

  33. P. Lambert and R.A.F. Grieve, Earth Planet. Sci. Lett. 68, p. 159, (1984).

    Article  ADS  Google Scholar 

  34. B.R Doe and S.R. Hart, J. Geophys. Res. 68, p. 3521, (1963).

    Article  ADS  Google Scholar 

  35. M. Tatsumoto, R.J. Knight, and C.J. Allègre, Science 180, p. 1279, (1973).

    Article  ADS  Google Scholar 

  36. RW. Carlson and G.W. Lugmair, Earth Planet. Sci. Lett. 90, p. 119, (1988).

    Article  ADS  Google Scholar 

  37. F. Tera, L.A. Ray, and G.J. Wasserburg, in Apollo 15 Lunar Samples (ed J.W. Chamberlain and C. Watkins), Lunar Science Institute, Houston, p. 396, (1972).

    Google Scholar 

  38. M. Tatsumoto, P.D. Nunes, and D.M. Unruh, in The Soviet-American Conference on Cosmochemisiry of the Moon and Planets (ed. J.H. Pomeroy and N.J. Hubbard), NASA, Washington, DC, p. 507, (1977).

    Google Scholar 

  39. W.R. Premo, M. Tatsumoto, and J.-W. Wang, in Proc. 19th Lunar Planet. Sci. Conf. (ed. G. Ryder and V.L. Sharpton), Lunar and Planetary Institute, Houston, p. 61, (1989).

    Google Scholar 

  40. B.B. Hannan and G.R. Tilton, Earth Planet Sci. Lett. 84, p. 15, (1987).

    Article  ADS  Google Scholar 

  41. W.R. Premo and M. Tatsumoto, Lunar Planet. Sci. XXIV, p. 1173, (1993).

    ADS  Google Scholar 

  42. C. Alibert, M.D. Norman, and M.T. McCulloch, Geochim. Cosmochim. Acta 58, p. 2921, (1994).

    Article  ADS  Google Scholar 

  43. L. Borg, M. Norman, L. Nyquist, D. Bogard, G. Snyder, L. Taylor, and M. Lindstrom, Geochim. Cosmochim. Acta 63, p. 2679, (1999).

    Article  ADS  Google Scholar 

  44. O.B. James, Science 175, p. 432 (1972).

    Article  ADS  Google Scholar 

  45. H.G. Wilshire, G.G. Schaber, L.T. Silver, W.C. Phinney, and E.D. Jackson, Geol. Soc. Am. Bull. 83, p. 1083, (1972).

    Article  Google Scholar 

  46. O.B. James, Proc. 11th Lunar Planet. Sci. Conf. (ed. R.B. Merrill), Pergamon Press, Elmsford, NY, p. 366, (1980).

    Google Scholar 

  47. W.C. Phinney, Lunar Planet. Sci. XXV, p. 1081, (1994).

    ADS  Google Scholar 

  48. W.R. Premo, M. Tatsumoto, K. Misawa, N. Nakamura, and NT. Kits, International Geology Rev. 41, p. 95, (1999).

    Article  Google Scholar 

  49. K. Yanai, in Proc. 21-st Lunar Planet. Sci. Conf. (ed. G. Ryder and V.L. Sharpton), Lunar and Planetary Institute, Houston, p. 317, (1991).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Misawa, K., Yamazaki, F., Sawada, S., Sekine, T. (2003). Redistribution of Radiogenic Lead in Plagioclase during Shock Metamorphism. In: Davison, L., Horie, Y., Sekine, T. (eds) High-Pressure Shock Compression of Solids V. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0011-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0011-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6552-8

  • Online ISBN: 978-1-4613-0011-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics