Skip to main content

Experimental Techniques for the Simulation of Shock Metamorphism: A Case Study on Calcite

  • Chapter
Book cover High-Pressure Shock Compression of Solids V

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

The cratered surfaces of asteroids and terrestrial planets underscore the importance of impacts for the formation and evolution of the solar system. Early in the history of the solar system such collisions were the mechanism for accretion of planetesimals and finally the planets themselves [1]. The effects of these still ongoing collisions are visible from the megascopic down to the submicroscopic length scale, i.e., they range from large impact craters and their ejecta blankets down to shock-metamorphic effects in minerals [2–4]. These effects form as a result of the interaction of strong shock waves with the affected solid matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.W. Wetherill, Accumulation of terrestrial planets and implications concerning lunar origin, in Origin of the Moon (eds. K. Hartmann, R.J. Phillips, and G.J. Taylor) Lunar and Planetary Institute, Houston, pp. 519–550 (1984).

    Google Scholar 

  2. A. Deutsch and F. Langenhorst, Mineralogy of Astroblemes—Terrestrial Impact craters, Chapters 1.10.1–1.10.4., Introduction, Cratering and shock metamorphism, Characteristics of terrestrial impact structures, and Geological formations in and around impact structures, in Advanced Mineralogy, Vol. 3, Mineral matter in space, mantle ocean floor, biosphere, environmental management, and jewelry (ed. A.S. Marfunin), Springer, Berlin, pp. 76–95 (1998).

    Google Scholar 

  3. F. Langenhorst and A. Deutsch, Shock experiments on pre-heated α-and β-quartz: I. Optical and density data. Earth Planet. Sci. Lett. 125, pp. 407–420 (1994).

    Article  ADS  Google Scholar 

  4. D. Stöffler and F. Langenhorst (1994), Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29, pp. 155–181.

    ADS  Google Scholar 

  5. K. Tomeoka, Y. Yamahana, and T. Sekine, Experimental shock metamorphism of the Murchison CM carbonaceous chondrite. Geochim. Cosmochim. Acta 63(21), pp. 3683–3703 (1999).

    Article  ADS  Google Scholar 

  6. A. Yamaguchi and T. Sekine, Monomineralic mobilization of plagioclase by shock: an experimental study. Earth Planet. Sci. Lett. 175, pp. 289–296 (2000).

    Article  ADS  Google Scholar 

  7. H. Leroux, J.C. Doukhan, and F. Langenhorst, Microstructural defects in experimentally shocked diopside: A TEM characterization. Phys. Chem. Minerals 20, pp. 521–530 (1994).

    Article  ADS  Google Scholar 

  8. F. Langenhorst, M. Boustie, A. Migault, and J.P. Romain, Laser shock experiments with nanoseconds pulses: a new tool for the reproduction of shock defects in olivine. Earth Planet. Sci. Lett. 173, pp. 333–342 (1999).

    Article  ADS  Google Scholar 

  9. P. Agrinier, A. Deutsch, U. Schärer, and I. Martinez, Fast back-reactions of shock-released CO2 from carbonates: an experimental approach. Geochim. Cosmochim. Acta, (2001) in press.

    Google Scholar 

  10. R. Skála, J. Ederová, P. Matejka, and F. Hörz, Mineralogical studies of experimentally shocked dolomite: Implications for the outgassing of carbonates, in: Catastrophic Events & Mass Extinctions: Impacts and Beyond, (eds. C. Koeberl and K.G. MacLeod), Geol. Soc. Amer. Special Paper, (2001) in press.

    Google Scholar 

  11. M.B. Boslough, T.J. Ahrens, J. Vizgirda, R.H. Becker, and S. Epstein, Shock-induced devolatilization of calcite. Earth Planet. Sci. Lett. 61, pp. 166–170 (1982).

    Article  ADS  Google Scholar 

  12. M.A. Lange and T.J. Ahrens, Shock-induced CO2 loss from CaC03; implications for early planetary atmospheres. Earth Planet. Scei. Lett. 83, pp. 1–15 (1986).

    Google Scholar 

  13. J.A. Tyburczy and T.J. Ahrens, Dynamic compression and volatile release of carbonates. J. Geophys. Res. 91, pp. 4730–4744 (1986).

    Article  ADS  Google Scholar 

  14. I. Martinez, A. Deutsch, U. Schärer, Ph. Ildefonse, F. Guyot, and P. Agrinier, Shock recovery experiments on dolomite and thermodynamical modeling of impact-induced decarbonation. J. Geophys. Res. 100(B8), pp. 15,465–15,476 (1995).

    Article  ADS  Google Scholar 

  15. R. Cauble, D.W. Phillion, T.J. Hoover, N.C. Holmes, J.D. Kilkenny, and R.W. Lee, Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70(4), pp. 2102–2105 (1993).

    Article  ADS  Google Scholar 

  16. P. Lambert, Les effets des ondes de choc naturelles et artificielles, et le cratère d’impact de Rochechouard. Ph.D. thesis, Université de Paris Sud, Centre d’Orsay, pp. 179–297 (1977).

    Google Scholar 

  17. D. Stöffler and R. Ostertag, The Ries impact crater. Fortschr. Miner. 61(2), pp. 71–116 (1983).

    Google Scholar 

  18. H.J. Melosh, Impact Cratering—A Geologic Process. Oxford monographs on geology and geophysics Nol1. Oxford University Press, New York, p. 245 (1989).

    Google Scholar 

  19. A. Migault, Concepts of shock waves, in Impacts on Earth (eds. D. Benest and C. Froeschlé) Springer, Berlin, pp. 79–112 (1998).

    Chapter  Google Scholar 

  20. J.B. Bibring, F. Cottet, M. Hallouin, Y. Langvin, and J.P. Romain, Simulation laser d’impacts de particules de très grande vitesse. J. Physique Lett. 44, pp. 189–194 (1983).

    Article  Google Scholar 

  21. S. Couturier, T. de Resseguier, M. Hallouin, J.P. Romain, and F. Bauer, Shock profile induced by short laser pulses. J. Appl. Phys. 79(12), pp. 9338–9342 (1996).

    Article  ADS  Google Scholar 

  22. P. Cordier, J.C. Doukhan, A. Migault, and J.P. Romain, Microstructural investigation of quartz submitted to ultra-short shock loading. J. Materials Sci. 30, pp. 4009–4013 (1995).

    Article  ADS  Google Scholar 

  23. J. Grün, R. Decoste, B.H. Ripin, and J. Gardner (1981), Characteristics of ablation plasma from planar, laser-driven targets. Appl. Phys. Lett. 39(7), pp. 545–547.

    Article  ADS  Google Scholar 

  24. F. Cottet and A. Migault, A simple model for the theoretical evaluation of the temperature behind a very strong shock. High Temperatures-High Pressures 16, pp. 665–668 (1985).

    Google Scholar 

  25. P.W. Dueweke, A technique for launching intermediate velocity thin plastic sheets. Rev Sci. Inst. 41(4), pp. 539–541 (1970).

    Article  ADS  Google Scholar 

  26. A.H. Guenther, D.C. Wunsch, and T.D. Soapes, Acceleration of thin plates by exploding foil techniques, in Exploding Wires (eds. W.G. Chase and H.K. Moore), Plenum Press, N.Y., pp. 279–298 (1962).

    Chapter  Google Scholar 

  27. P.V. Keller and J.R. Pennings Jr., Exploding foils—The production of plane shock waves and the acceleration of thin plates, in Exploding Wires (eds. W.G. Chase and H.K. Moore), Plenum Press, N.Y., pp. 263–277 (1962).

    Chapter  Google Scholar 

  28. U. Hornemann and W.F. Müller, Shock-induced deformation twins in clinopyroxene. Neues Jahrb Mineral Monatsh 6, pp. 247–255 (1971).

    Google Scholar 

  29. W.F. Müller and U. Hornemann (1969), Shock-induced planar deformation structures in experimentally shock-loaded olivines from chondritic meteorites. Earth Planet. Sci. Lett. 7, pp. 251–264.

    Article  ADS  Google Scholar 

  30. B. Ivanov, F. Langenhorst, A. Deutsch, and U. Hornemann, How strong was impact-induced CO2 degassing in the K/T event? Numerical modelling of laboratory experiments, in Catastrophic Events & Mass Extinctions: Impacts and Beyond, (eds. C. Koeberl and K.G. MacLeod), Geol. Soc. Amer. Spec. Paper, (2001) in press.

    Google Scholar 

  31. J. Arndt, U. Hornemann, and W.F. Müller, Shock-wave densification of silica glass. Physics and Chemistry of Glasses 12, pp. 1–7 (1971).

    Google Scholar 

  32. G.E. Duvall and G.R. Fowles, Shock waves, in High Pressure Physics and Chemistry, Vol. 2 (ed. R.S. Bradley), Academic Press, London and New York: pp 209–291, (1963).

    Google Scholar 

  33. M.H. Rice, R.G. McQueen, and J.M. Walsh, Compression of solids by strong shock waves, in Solid State Physics, Vol. 6 (eds. F. Seitz and D. Turnbull), Academic Press, London, pp. 1–63 (1958).

    Google Scholar 

  34. F. Langenhorst, A. Deutsch, U. Hornemann, and D. Stöffler, Effect of temperature on shock metamorphism of single crystal quartz. Nature 356, pp. 507–509 (1992).

    Article  ADS  Google Scholar 

  35. F. Langenhorst, Shock experiments on pre-heated α-and β-quartz: II. X-ray and TEM investigations. Earth Planet. Sci. Lett. 128, pp. 683–698 (1994).

    Article  ADS  Google Scholar 

  36. D. Rubie, Characterising the sample environment in multianvil high-pressure experiments. Phase Transitions 68, pp. 431–451 (1999).

    Article  Google Scholar 

  37. S. Karato and D.C. Rubie, Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation studies under high pressures and temperatures, J. Geophys. Res. 102(B9), pp. 20111–20122 (1997).

    Article  ADS  Google Scholar 

  38. M.J. Walter, Y. Thibault, K. Wei, and R.W. Luth, Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Can. J. Phys. 73, pp. 273–286 (1995).

    Article  ADS  Google Scholar 

  39. F. Langenhorst and A. Deutsch, Mineralogy of Astroblemes—Terrestrial Impact craters, Chapter 1.10.5. Minerals in terrestrial impact structures and their characteristic features, in Advanced Mineralogy; Vol. 3 Mineral matter in space, mantle ocean floor, biosphere, environmental management, and jewelry, (ed. A.S. Marfunin), Springer, Berlin, pp 95–119 (1998).

    Google Scholar 

  40. M.R. Khan and D.J. Barber, Composition-related microstructures in zinc-bearing carbonate assemblages from Broken Hill, New South Wales. Mineralogy and Petrology 41, pp. 229–245 (1990).

    Article  ADS  Google Scholar 

  41. M.G. Kim, U. Dahmen, and A.W. Searcy, Structural transformations in the decomposition of Mg(OH)2 and MgC03. J. Am. Ceram. Soc. 70(3), pp. 146–154 (1987).

    Article  Google Scholar 

  42. R.J. Reeder, Carbonates: Growth and alteration microstructures, in Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (ed. P.R. Buseck), pp. 381–424 (1992).

    Google Scholar 

  43. D.J. Barber and H.R. Wenk, Deformation twinning in calcite, dolomite, and other rhombohedral carbonates. Phys. Chem. Minerals 5, pp. 141–165 (1979).

    Article  ADS  Google Scholar 

  44. G. Rose, Über die im Kalkspath vorkommenden hohlen Canäle. Abh. Königl. Akad. Wiss. Berlin 23, pp. 57–79 (1868).

    Google Scholar 

  45. B. Ivanov and A. Deutsch, The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys. Earth Planet. Int., (2001) submitted.

    Google Scholar 

  46. F.J. Turner and L.E. Weiss, Structural Analysis of Metamorphic Tectonites. McGraw Hill, New York, p. 545 (1963).

    Google Scholar 

  47. P. Agrinier, A. Deutsch, U. Schärer, I. Martinez, and M. Javoy, On the kinetics of the reaction CO2 with hot CaO during impact events: an experimental study. Lunar and Planetary Science 29, #1217 (CD-ROM) (1998).

    Google Scholar 

  48. G. Graup, Carbonate-silicate liquid immiscibility upon impact melting: Ries crater, Germany. Meteoritics & Planetary Science 34, pp. 425–438 (1999).

    Article  ADS  Google Scholar 

  49. D.J. Barber and H.R. Wenk (1979b), On geological aspects of calcite microstructure. Tectonophysics 54, pp. 45–60.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langenhorst, F. et al. (2003). Experimental Techniques for the Simulation of Shock Metamorphism: A Case Study on Calcite. In: Davison, L., Horie, Y., Sekine, T. (eds) High-Pressure Shock Compression of Solids V. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0011-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0011-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6552-8

  • Online ISBN: 978-1-4613-0011-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics