Annotated and Illustrated Bibliography

  • Paul E. Potter
  • J. Barry Maynard
  • Wayne A. Pryor

Abstract

This bibliography contains 450 references, most of which are not cited in Chapters 1 and 2, and 92 illustrations. We included illustrations because properly selected illustrations convey far more of the spirit and/or content of the author’s work than his words alone.

Keywords

Petroleum Zeolite Hydrocarbon Pyrite Conglomerate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  1. Beck, K.C. 1974. Shales. The New Encyclopaedia Britannica, 15th ed. Macropaedia, Chicago, v. 16, pp. 634–638.Google Scholar
  2. Blatt, H., G. Middleton, and R. Murray. 1979. Origin of Sedimentary Rocks. 2nd ed. Prentice-Hall, Englewood Cliffs, N.J., 634 pp.Google Scholar
  3. Boswell, P.G.H. 1961. Muddy Sediments. W. Heffer and Sons, Ltd., Cambridge, 140 PP.Google Scholar
  4. Bradley, W.H. 1931. Origin and Microfossils of the Oil Shale of the Green River Formation of Colorado and Utah. U.S. Geol. Survey Prof. Paper 168, 58 pp.Google Scholar
  5. Fairbridge, R.W., and Bourgeois, J., Eds. 1978. The Encyclopedia of Sedimentology. Dowden, Hutchinson and Ross, Stroudsburg, Pa., 901 pp.Google Scholar
  6. Grim, R.E. 1968. Clay Mineralogy. 2nd ed. McGraw-Hill Book Co., New York, 596 PP.Google Scholar
  7. Keller, W.D. 1964. Processes of origin and alteration of clay minerals. In: C.I. Rich and G.W. Kunze, Eds. Soil Clay Mineralogy; A Symposium, Univ. North Carolina Press, Chapel Hill, p. 3–76.Google Scholar
  8. Millot, G. 1970. Geology of Clays. Springer-Verlag, New York, Heidelberg, Berlin, 429 pp.Google Scholar
  9. Pettijohn, F.J. 1975. Sedimentary Rocks. 3rd ed. Harper and Row, New York, 628 pp.Google Scholar
  10. Strakhov, N.M. 1969. Principles of Lithogenesis, v. 2. Consultants Bureau, New York and Edinburgh, 609 pp.Google Scholar
  11. van Olphen, H. 1963. Introduction to Clay Colloid Chemistry. Wiley Interscience, New York, 300 pp.Google Scholar
  12. von Engelhardt, W.F. 1973. Die Bildung von Sedimenten and Sediment-gesteinen. Sediment-Petrologie, Teil Ill, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 378 pp.Google Scholar
  13. Yariv, S., and H. Cross. 1979. Geochemistry of Colloid Systems. Springer-Verlag, Berlin-Heidelberg, New York, 450 pp.Google Scholar
  14. Archanquelsky, A.D. 1927, 1928. Ob Osadkak Chernov Morya i ik Znachenii v Poznanii Osadochnik Gornik Porod. (On the Black Sea Sediments and Their Importance for the Study of Sedimentary Rocks.): Bull. Soc. Naturalistes de Moscou Sec. Géol., n.s., v15, p. 261–289, and v. 6, p. 90–108.Google Scholar
  15. Davis, A.G., and G.F. Elliott. 1957. The paleogeography of the London Clay Sea: Geol. Assoc. London Proc., v. 68, p. 255–277.Google Scholar
  16. Fisher, D.W. 1957. Lithology, Paleoecology, and Paleontology of the Vernon Shale (Late Silurian) in the Type Area: New York State Mus. Sci. Serv., Bull. 364, 31 pp.Google Scholar
  17. Grim, R.E., W.F. Bradley, and W.A. White. 1957. Petrology of the Paleozoic Shales of Illinois. Illinois Geol. Survey Rept. Invest 203, 35 pp.Google Scholar
  18. Keller, W.D., and C.P. Ting. 1950. The petrology of a specimen of the Perry Farm Shale: Jour. Sed. Petrol., v. 20, p. 123–132.Google Scholar
  19. Millot, G. 1949. Relations entre la Constitution et la Genèse des Roches Sédimentaires Argileuses: Geol. Appl. Prospect. Minière, v. 2, 352 pp.Google Scholar
  20. Moore, H.B. 1931. The muds of the Clyde Sea area. Ill: Chemical and physical conditions; rate and nature of sedimentation; and fauna: J. Mar. Biol. Assoc. U. K. n.s., v. 17, p. 325–358.Google Scholar
  21. Murray, J., and A.F. Renard. 1891. Report on Deep-Sea Deposits, Based on the Specimens Collected During the Voyage of H.M.S. Challengerin the Years 1872 to 1876. Her Majesty’s Stationery Office, London, 525 pp.Google Scholar
  22. Pepper, J.F., W. de Witt Jr., and D.F. Demarest. 1954. Geology of the Bedford Shale and Berea Sandstone in the Appalachian Basin. U.S. Geol. Survey Prof. Paper 259, 111 pp.Google Scholar
  23. Rich, J.L. 1937. Probable fondo origin of MarcellusüOhioüNew AlbanyüChattanooga bituminous shales: Amer. Assoc. Petrol. Geol. Bull., v. 35, p. 2017–2040.Google Scholar
  24. Richter, R. 1931. Tierwelt and Umwelt im Hunsrückschiefer; zur Entstehung eines schwarzen Schlammsteins: Senckenbergiana, v. 13, p. 299–342.Google Scholar
  25. Rubey, W.W. 1931. Lithologic Studies of Fine-Grained Upper Cretaceous Sedimentary Rocks of the Black Hills Region. U.S. Geol. Survey Prof. Paper 165-A, 54 pp.Google Scholar
  26. Ruedemann, R. 1935. Ecology of black mud shales of eastern New York: Jour. Paleontol., v. 9, p. 79–91.Google Scholar
  27. Sorby, H.C. 1908. On the application of quantitative methods to the study of the structure and history of rocks: Quart. Geol. Soc. London, v. 64, p. 171–233.Google Scholar
  28. Strom, K.M. 1939. Land-locked waters and the deposition of black muds. In: P.D. Trask, Ed., Recent Marine Sediments. Amer. Assoc. Petrol. Geol., p. 356–372.Google Scholar
  29. Woolnough, W.G. 1937. Sedimentation in barred basins and source rocks of oil: Amer. Assoc. Petrol. Geol. Bull., v. 21, p. 1101–1157.Google Scholar

Classification

  1. Picard, M.D. 1971. Classification of fine-grained sedimentary rocks: Jour. Sed. Petrol., v. 41, p. 179–195.Google Scholar
  2. Underwood, L.B. 1967. Classification and identification of shales: Proc. Am. Soc. Civil Engineers, v. 93, Paper 5560. Jour. Soil Mechanics and Foundations Div., n. SM6, p. 97–116.Google Scholar
  3. Wood, L.E., and P. Deo. 1975. A suggested system for classifying shale materials for embankments: Assoc. Eng. Geol. Bull., v. 12, n. 1, p. 39–55.Google Scholar

Transport and Erosion

  1. Allersma, E. 1971. Mud on the oceanic shelf off Guyana. In: Symposium on Investigation and Resources of the Caribbean Sea and Adjacent Regions. UNESCO, Paris, p. 193–203.Google Scholar
  2. Cole, R.D., and M.D. Picard. 1975. Primary and secondary sedimentary structures in oil shale and other fine-grained rocks, Green River Formation (Eocene), Utah and Colorado: Utah Geol., v. 2, p. 49–67.Google Scholar
  3. Collins, M., G. Ferentinos, and F.T. Banner. 1979. The hydrodynamics and sedimentology of a high (tidal and wave) energy embayment (Swansea Bay, Northern Bristol Channel): Estuarine Coastal Mar. Sci. v. 8, p. 49–74.Google Scholar
  4. Colton, G.W. 1967. Orientation of carbonate concretions in the Upper Devonian of New York. U.S. Geol. Survey Prof. Paper 575-B, p. 57–59.Google Scholar
  5. Chamley, H., and F. Picard. 1970. L’heritage détritique des fleuves provencaux en milieu marin: Tethys, v. 2, p. 211–226.Google Scholar
  6. Drake, D.E. 1976. Suspended sediment transport and mud deposition on continental shelves. In: D.J. Stanley and D.J.P. Swift, Eds., Marine Sediment Transport and Environmental Management. John Wiley and Sons, New York, p. 127–158.Google Scholar
  7. Einsele, G., R. Overbeck, H.U. Schwarz, and G. Unsöld. 1974. Mass physical properties, sliding and erodibility of experimentally deposited and differentially consolidated clayey muds: Sedimentology, v. 21, p. 339–372.Google Scholar
  8. Gibbs, Ronald J., Ed. 1974. Suspended Solids in Water. Plenum Press, New York and London, 320 pp.Google Scholar
  9. Griffin, G.M. 1962. Regional clay-mineral facies—Products of weathering intensity and current distribution in the northeastern Gulf of Mexico: Geol. Soc. Amer. Bull., v. 73, p. 737–767.Google Scholar
  10. Hedges, J.I., and P.L. Parker. 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico: Geochim. Cosmochim. Acta, v. 40, p. 1019–1029.Google Scholar
  11. Heezen, B.C., Ed. 1977. Influence of Abyssal Circulation on Sedimentary Accumulations in Space and Time. Developments in Sedimentology, No. 23, Elsevier Scientific Publ. Co., Amsterdam, 215 pp; also published as Mar. Geol., v. 23, 1977.Google Scholar
  12. Holeman, J.N. 1968. The sediment yield of major rivers of the world: Water Resources Res., v. 4, p. 737–747.Google Scholar
  13. Jones, M.L., and J. A. Clendening. 1968. A feasibility study for paleocurrent analysis in lutaceous Monongahela—Dunkard strata of the Appalachian Basin: Proc. West Virginia Acad. Sci., v. 40, p. 255–261.Google Scholar
  14. Jones, M.L., and J. M. Dennison. 1970. Oriented fossils as paleocurrent indicators in Paleozoic lutites of Southern Appalachians: Jour. Sed. Petrol., v. 40, p. 642–649.Google Scholar
  15. Kranck, K. 1975. Sediment deposition from flocculated suspensions: Sedimentology, v. 22, p. 111–123.Google Scholar
  16. Krone, R.B. 1962. Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes. Hydraulic Eng. Lab. and Sanitary Eng. Res. Lab., Univ. California, Berkeley, 110 pp.Google Scholar
  17. Lonsdale, P., and Spiess, F. N. 1977. Abyssal bedforms explored with a deeply towed instrument package. In: B. C. Heezen, Ed., Influence of Abyssal Circulation on Sedimentary Accumulations in Space and Time. Developments in Sedimentology, No. 23, Elsevier Scientific Publ. Co., Amsterdam, p. 57–76; also published in Mar. Geol., v. 23, 1977.Google Scholar
  18. McCave, I. N. 1971. Wave effectiveness at the sea bed and its relationship to bed-forms and deposition of mud: Jour. Sed. Petrol., v. 41, p. 89–96.Google Scholar
  19. McCave, I.N. 1972. Transport and escape of fine-grained sediment from shelf areas. In: D.J.P. Swift, D.B. Duane, and O.H. Pilkey, Eds., Shelf Sediment Transport: Process and Pattern. Dowden, Hutchinson and Ross, Stroudsburg, Pa., p. 225–248.Google Scholar
  20. Migniot, C. 1968. Étude des propriétés physiques de différents sédiments très fins et de leur comportement sous des action hydrodynamiques. La Houille Blanche, v. 23, p. 591–620.Google Scholar
  21. Moors, H.T. 1969. The position of graptolites in turbidites: Sed. Geol., v. 3, p. 241–261.Google Scholar
  22. NEDECO. 1968. Surinam Transportation Study: Report on Hydraulic Investigation. Consultants Netherlands Engineering, The Hague, Netherlands, 293 pp.Google Scholar
  23. Rashid, M.A., and G.E. Reinson. 1979. Organic matter in surficial sediments of the Miramichi Estuary, New Brunswick, Canada: Estuarine Coastal Mar. Sci., v. 8, p. 23–36.Google Scholar
  24. Southard, J.B. 1974. Erodibility of fine abyssal sediment. In: A.L. Inderbitzen, Ed. Deep-Sea Sediments. Plenum Press, New York and London, p. 367–379.Google Scholar
  25. Stow, D.A.V., and J.P.B. Lovell. 1979. Contourites. Their recognition in modern and ancient sediments: Earth-Sci. Rev., v. 14, p. 251–291.Google Scholar
  26. Swift, D.J.P., J.R. Schubel, and R.W. Sheldon. 1972. Size analysis of fine-grained suspended sediments: A review: Jour Sed. Petrol. v. 42, p. 122–134.Google Scholar
  27. Tomadin. L. 1974. Les minéraux argileux dans less sediments actuels de la mer Tyrrhenienne: Bull. Groupe Francais Argiles, v. 26, p. 219–228.Google Scholar
  28. Vandenberghe, N. 1976. Phytoclasts as provenance indicators in the Belgian Septaria Clay of Boom (Rupelian age): Sedimentology, v. 23, p. 141–145.Google Scholar
  29. van Straaten, L.M.J.U., and Ph. H. Kuenen. 1957. Accumulation of fine-grained sediments in the Dutch Wadden Sea: Geol. Mijnbouw, N.W. series, v. 19e, p. 329–354.Google Scholar
  30. Venkatarathnam, K., P.E. Biscaye, and W.B.F. Ryan. 1972. Origin and dispersal of Holocene sediments in the eastern Mediterranean Sea. In: D.J. Stanley, Ed., The Mediterranean Sea. Dowden, Hutchinson and Ross, Stroudsburg, Pa., p. 459–469.Google Scholar
  31. Verger, F. 1969, Marais et Wadden du Littoral Francais. Biscaye Frères, Bordeaux, 541 pp.Google Scholar
  32. Wells, J.T., and J.M. Coleman. 1978. Longshore transport of mud by waves: Northeastern coast of South America: Geologie en Mijnbouw, v. 57, p. 353–359.Google Scholar
  33. Wiley, M., Ed. 1976. Estuarine Processes, v. II. Circulation, Sediments, and Transfer of Material in the Estuary. Academic Press, Inc., New York, 428 pp.Google Scholar
  34. Young, R.N., and J.B. Southard. 1978. Erosion of Fine-Grained Marine Sediments: Sea-Floor and Laboratory Experiments: Geol. Soc. Amer. Bull., v. 89, p. 663–672.Google Scholar

Deposition of Modern Muds

  1. Attia, M.I. 1954. Deposits in the Nile Valley and the Delta. Geol. Survey Egypt, Cairo, 356 pp.Google Scholar
  2. Bouma, A.H. 1963. A graphic presentation of the facies model of salt marsh deposits: Sedimentology, v. 2, p. 122–129.Google Scholar
  3. Chamley, H. 1971. Recherches sur la Sédimentation Argileuse en Mediterranée: Sci. Géol. Mem., v. 35, 209 pp.Google Scholar
  4. Clague, J.J. 1976. Sedimentology and Geochemistry of Marine Sediments Near Comox, British Columbia. Geol. Survey Canada Paper 76–21, 21 pp.Google Scholar
  5. Coleman, J.M. 1966a. Ecological changes in a massive fresh-water clay sequence: Trans. Gulf Coast Assoc. Geol. Socs., v. 16, p. 159–174.Google Scholar
  6. Coleman, J.M. 1966b. Recent Coastal Sedimentation: Central Louisiana Coast. Coastal Studies Ser., v. 17, Louisiana State Univ. Press, Baton Rouge, 73 pp.Google Scholar
  7. Degens, E.T., and D.A. Ross, Eds. 1974. The Black SeaüGeology, Chemistry and Biology. Amer. Assoc. Petrol. Geol. Mem. 20, 633 pp.Google Scholar
  8. Deuser, W.G. 1975. Reducing environments. In: J.P. Riley and G. Skirrow, Eds., Chemical Oceanography, v. 3. 2nd ed. Academic Press, New York, p. 1–37.Google Scholar
  9. Eden, W.J. 1955. A laboratory study of varved clay from Steep Rock Lake, Ontario: Amer. Jour. Sci., v. 253, p. 659–674.Google Scholar
  10. Eisma, D., and H.W. van der Marel. 1971. Marine muds along the Guyana coast and their origin from the Amazon Basin: Contrib. Mineral. Petrol., v. 31, p. 321–334.Google Scholar
  11. Emery, K.O. 1969. Distribution pattern of sediments on the continental shelves of western Indonesia: Economic Commission for Asia and the Far East, Technical Bull., v. 2, p. 79–82.Google Scholar
  12. Endyanov, E.M. 1972. Principal types of recent bottom sediments in the Mediterranean Sea: Their mineralogy and geochemistry. In: D.J. Stanley, Ed., The Mediterranean Sea. Dowden, Hutchinson and Ross, Stroudsburg, Pa., p. 355–399.Google Scholar
  13. Evans, G. 1965. Intertidal flat sediments and their environments of deposition in the Wash: Quart. Jour. Geol. Soc. London, v. 121, p. 209–245.Google Scholar
  14. Fisk, H.N. 1947. Fine-Grained Alluvial Deposits and Their Effects on Mississippi River Activity. U.S. Army Corps of Engineers, Mississippi River Commission, Vicksburg, Miss., 82 pp.Google Scholar
  15. Gibbs, R.J. 1973. The bottom sediments of the Amazon shelf and tropical Atlantic Ocean: Mar. Geol., v. 14, p. M39 – M45.Google Scholar
  16. Glenn, J.L., and A.R. Dahl. 1959. Characteristics and distribution of some Missouri River deposits: Proc. Iowa Acad. Sci., v. 66, p. 302–311.Google Scholar
  17. Gopinathan, C.K., and S.Z. Qasim. 1974. Mud banks of Kerala—Their formation and characteristics: Indian Jour. Mar. Sci., v. 3, p. 105–114.Google Scholar
  18. Gucluer, S.M., and M.G. Gross. 1964. Recent marine sediments in Saanich Inlet, a stagnant marine basin: Limnol. Oceanog., v. 9, p. 359–376.Google Scholar
  19. Heath, G.R., T.C. Moore Jr., and G.L. Roberts. 1974. Mineralogy of surface sediments from the Panama Basin, eastern equatorial Pacific: Jour. Geol., v. 82, p. 145–160.Google Scholar
  20. Jacob, P.G., and S.Z. Qasim. 1974. Mud of a mud bank in Kerala, south-west coast of India: Indian Jour. Mar. Sci., v. 3, p. 115–119.Google Scholar
  21. Kolb, C.R., and R.I. Kaufman. 1967. Prodelta clays of southeast Louisiana. In: A.F. Richards, Ed., Marine Geotechnique. Internatl. Marine Geotechnical Res. Conf. (Monticello, Illinois) Proc:, Univ. Illinois Press, Urbana, p. 3–21.Google Scholar
  22. Laking, P.N. 1974. The Black Sea, Its Geology, Chemistry, Biology: A Bibliography. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 368 pp.Google Scholar
  23. Lisitzin, A.P. 1972. Sedimentation in the World Ocean. Soc. Econ. Paleontol. Mineral. Spec. Publ. No. 17, 218 pp.Google Scholar
  24. Melieres, F., and H. Perez-Nieto. 1973. Les mineraux argileux des sediments Récents du Golfe de Cariaco (Venezuela): Bull. Groupe Francais Argiles, v. 25, p. 65–78.Google Scholar
  25. Monaco, A. 1975. Les facteurs de la sédimentation marine argileuse. Les phénoménes physico-chimiques â l’interface: Bull. B.R.G.M., 2nd Ser., Sec. IV, p. 147–174.Google Scholar
  26. Moore, D.G., J.R. Curray, and F.J. Emmel. 1976. Large submarine slide (olistostrome) associated with Sunda Arc subduction zone, northeast Indian Ocean: Mar. Geol., v. 21, p. 211–226.Google Scholar
  27. Nair, R.R. 1976. Unique mud banks, Kerala, southwest India: Amer. Assoc. Petrol. Geol. Bull., v. 60, p. 616–621.Google Scholar
  28. Neiheisel, J. 1966. Significance of Clay Minerals in Shoaling Problems. Committee Tidal Hydraulics, U.S. Army Corps of Engineers, Tech. Bull. 10, 30 pp.Google Scholar
  29. Paul, J. 1970. Sedimentologische Untersuchungen eines küstennahen mediterranen Schlammbodens (Limski Kanal, Nördliche Adria): Geol. Rundschau, v. 60, p. 205–222.Google Scholar
  30. Pelletier, B.R., F.J.E. Wagner, and A.C. Grant. 1968. Marine geology. In: C.S. Beals, Ed., Science, History and Hudson Bay, v. 2, Canada Dept. Energy, Mines and Resources, p. 557–613.Google Scholar
  31. Pevear, D.R. 1972. Source of Recent nearshore marine clays, southeastern United States. In: B. Nelson, Ed., Environmental Framework of Coastal Plain Estuaries. Geol. Soc. Amer. Mem., v. 133, p. 317–336.Google Scholar
  32. Pilkey, O.H., and D. Noble. 1966. Carbonate and clay mineralogy of the Persian Gulf: Deep-Sea Res., v. 13, p. 1–16.Google Scholar
  33. Piskin, K., and R.E. Bergstrom. 1975. Glacial Drift in Illinois: Thickness and Character. Illinois Geol. Survey Circ. 490, 35 pp.Google Scholar
  34. Plumb, C.E., G. Ricks, D.C. McMullen and C. Chastain. 1955. Seepage Conditions in Sacramento Valley. California Div. Water Resources, Rept. to the Water Project Authority, 128 pp.Google Scholar
  35. Pryor, W.A. 1975. Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments: Geol. Soc. Amer. Bull., v. 86, p. 1244–1254.Google Scholar
  36. Reineck, H.-E., W.F. Gutmann, ünd G. Hertweck. 1967. Das Schlickgebiet südlich Helgoland als Beispiel rezenter Schelfablagerungen: Senckenbergiana Lethaea, v. 48, p. 219–275.Google Scholar
  37. Reineck, H.-E., and I.B. Singh. 1973. Depositional Sedimentary Environments. Springer-Verlag, New York, Heidelberg, Berlin, 439 pp.Google Scholar
  38. Rupke, N.A. 1975. Deposition of fine-grained sediments in the abyssal environments of the Algéro Balearic Basin, western Mediterranean Sea: Sedimentology, v. 22, p. 95–109.Google Scholar
  39. Rusnak, G.A. 1960. Sediments of Laguna Madre, Texas. In: F.P. Shepard, F.B. Phleger, and Tj. H. van Andel, Eds., Recent Sediments, Northwestern Gulf of Mexico. Amer. Assoc. Petrol. Geol. Tulsa, Okla., p. 153–196.Google Scholar
  40. Ryan, W.B.F., and M.B. Cita. 1977. Ignorance concerning episodes of ocean-wide stagnation. In: B.C. Heezen, Ed., Influence of Abyssal Circulation on Sedimentary Accumulations in Space and Time. Developments in Sedimentology, No. 23, Elsevier Scientific Publ. Co., Amsterdam, p. 197–215; Also published in Mar. Geol., v. 23, 1977.Google Scholar
  41. Schäfer, W. 1956. Wirkungen der Benthos-Organismen auf den jungen Schichtverband: Senckenbergiana Lethaea, v. 37, p. 183–263.Google Scholar
  42. Sinha, E., and B. McCosh. 1974. Coastal-Estuarine and Near-Shore Processes. Prepared for the Office of Water Resources Research by Ocean Engineering Information Service, La Jolla, Ca., 218 pp. ( Distributed by National Technical Information Service, U.S. Dept. of Commerce).Google Scholar
  43. Stanley, D.J., and D.J.P. Swift, Eds. 1976. Marine Sediment Transport and Environmental Management. John Wiley and Sons, New York, 602 pp.Google Scholar
  44. Stuart, C.J., and C.A. Caughey. 1976. Form and composition of Mississippi Fan: Trans. Gulf Coast Assoc. Geol. Socs., v. 24, p. 333–343.Google Scholar
  45. van Andel, Tj. H. 1964. Recent marine sediments of the Gulf of California. In: Tj. H. van Andel and G.G. Shor, Eds., Marine Geology of the Gulf of California. Amer. Assoc. Petrol. Geol. p. 210–310.Google Scholar
  46. van Andel, Tj. H. 1967. The Orinoco Delta: Jour Sed. Petrol., v. 37, p. 297–310.Google Scholar
  47. van Straaten, L.M.J.U. 1965. Sedimentation in the northwestern part of the Adriatic Sea. In: W.F. Whitland and R. Bradshaw, Eds., Submarine Geology and Geophysics. Butterworths, London, p. 143–162.Google Scholar

Mineralogy

  1. Amiri-Garroussi, K. 1977. Origin of montmorillonite in Early Jurassic shales of NW Scotland: Geol. Mag., v. 114, p. 281–290.Google Scholar
  2. Aoyagi, K., N. Kobayashi, and T. Kazama. 1976. Clay mineral facies in argillaceous rocks of Japan and their sedimentary petrological meanings. In: S.W. Bailey, Ed., Proc. Internatl. Clay Conf., Mexico City, Mexico, 16–23 July 1975. Wilmette Publ. Ltd., Wilmette, Illinois, p. 101–110.Google Scholar
  3. Byrne, P.J., and R.N. Farvolden. 1959. The Clay Mineralogy and Chemistry of the Bearpaw Formation of Southern Alberta. Alberta Res. Council Bull. 4, Calgary, Alberta, 44 pp.Google Scholar
  4. Carroll, D. 1970. Clay Minerals: A Guide to Their X-Ray Identification. Geol. Soc. Amer. Spec. Paper 126, 80 pp.Google Scholar
  5. Chen, Pei-Yuan. 1977. Table of Key Lines in X-Ray Powder Diffraction Patterns of Minerals in Clays and Associated Rocks. Indiana Geol. Survey Occas. Paper 21, 67 pp.Google Scholar
  6. Cubitt, J.M. 1975. A regression technique for the analysis of shales by X-ray diffractometry: Jour. Sed. Petrol., v. 45, p. 546–553.Google Scholar
  7. Edzwald, J.K., and C.R. O’Melia. 1975. Clay distributions in Recent estuarine sediments: Clays Clay Minerals, v. 23, p. 39–44.Google Scholar
  8. Fellows, P.M. and D.A. Spears. 1978. The determination of feldspars in mudrocks using an X-ray powder diffraction method: Clays Clay Minerals, v. 26, p. 231–236.Google Scholar
  9. Gibbs, R.J. 1977. Clay mineral segregation in the marine environment: Jour. Sed. Petrol. v. 47, p. 237–243.Google Scholar
  10. Gieseking, J.E., Ed. 1975. Soil Components, v. 2, Inorganic Components. Springer-Verlag, New York, 684 pp.Google Scholar
  11. Griffin, G.M., and B.S. Parrott. 1964. Development of clay mineral zones during deltaic migration: Amer. Assoc. Petrol. Geol. Bull., v. 48, p. 57–69.Google Scholar
  12. Griffin, J.J., H. Windom, and E.D. Goldberg. 1968. The distribution of clay minerals in the world ocean: Deep-Sea Res., v. 15, p. 433–459.Google Scholar
  13. Grimshaw, R.W. 1971. The Chemistry and Physics of Clays. 4th ed. John Wiley and Sons, New York, 1032 pp.Google Scholar
  14. Hathaway, J.C. 1972. Regional clay mineral facies in estuaries and continental margin of the United States east coast. In: B.W. Nelson, Ed., Environmental Framework of Coastal Plain Estuaries. Geol. Soc. Amer. Mem. 133, p. 293–316.Google Scholar
  15. Hayes, J.B. 1970. Polytypism of chlorite in sedimentary rocks: Clays Clay Minerals, v. 18, p. 285–306.Google Scholar
  16. Jacobs, M.B., and J.D. Hays. 1972 Paleo-climatic events indicated by mineralogical changes in deep-sea sediments: Jour. Sed. Petrol., v. 42, p. 889–898.Google Scholar
  17. Jeans, C.V. 1978. The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England: Proc. Philosophical Trans. Royal Soc., Ser. A, v. 289, p. 549–636.Google Scholar
  18. Kabata-Pendias, A. 1967. Charakterystyka Geochemiczna Utworow Triasu z Rejonu Polski Polnocno-Zachodniej: Kwartalnik Geologiczny, Instytut Geologiczny, Warsaw, Poland, v. 11, p. 599–617.Google Scholar
  19. Keller, W.D. 1970. Environmental aspects of clay minerals: Jour. Sed. Petrol., v. 40, p. 788–813.Google Scholar
  20. Main, M.S., P.F. Kerr, and P-K. Hamilton. 1950. Occurrence and Microscopic Examination of Reference Clay Mineral Specimens. American Petroleum Institute Project 49, Clay Mineral Standards, Prelim. Rept. 5, p. 15–57.Google Scholar
  21. McBride, E.F. 1974. Significance of color in red, green, purple, olive, brown, and gray beds of Difunta Group, northeastern Mexico: Jour. Sed. Petrol., v. 44, p. 760–773.Google Scholar
  22. Moore, D.M. 1978. A sample of the Purington Shale prepared as a geochemical standard. lour. Sed. Petrol., v. 48, p. 995–998.Google Scholar
  23. Morton, R.A. 1972. Clay mineralogy of Holocene and Pleistocene sediments, Guadalupe Delta of Texas: Jour. Sed. Petrol., v. 42, p. 85–88.Google Scholar
  24. Naidu, A.S., D.C. Burrell, and D.W. Hood. 1971. Clay mineral composition and geologic significance of some Beaufort Sea sediments: Jour. Sed. Petrol., v. 41, p. 691–694.Google Scholar
  25. Neiheisel, J. 1972. Techniques for use of organic and amorphous materials in source investigations of estuary sediments. In: B.W. Nelson, Ed., Environmental Framework of Coastal Plain Estuaries. Geol. Soc. Amer. Mem. 133, p. 359–381.Google Scholar
  26. Parham, W.E. 1966. Lateral variations of clay mineral assemblages in modern and ancient sediments. In: K. Gekker and A. Weiss, Eds., Proc. Internatl. Clay Conf., v. 1. Pergammon Press, London, p. 135–145.Google Scholar
  27. Pelzer, E.E. 1966. Mineralogy, geochemistry and stratigraphy of the Besa River Shale, British Columbia: Canadian Petrol. Geol. Bull., v. 14, p. 273–321.Google Scholar
  28. Perrin, R.M.S. 1971. The Clay Mineralogy of British Sediments. Mineralogical Soc. ( Clay Minerals Group ), London, 247 pp.Google Scholar
  29. Perrin, R.M.S. 1972. The Clay Mineralogy of Bern alluvial muds of the Mississippi River Basin: Bull. Centre Rech. Pau-SNPA, v. 9, p. 353–389.Google Scholar
  30. Quakernaat, J. 1968. X-Ray Analysis of Clay Minerals in Some Recent Fluviatile Sediments along the coasts of Central Italy. Univ. Amsterdam, Physical Geography Laboratory, Publ. No. 12, 100 pp.Google Scholar
  31. Radan, S. 1975. Some data on the clay mineralogy and sedimentation in the abyssal zone of the Black Sea. In: Prima Conferinta Nationala Pentru Argile Bucurrsti, Nov. 1973. Institutul de Geologic si Geofisica, Ser. I (Mineralogie—Petrogrofie), No. 13, p. 113–125.Google Scholar
  32. Rateev, M.A., Z.N. Gorbumova, A.P. Lisitsyn, and G.L. Nosov. 1969. The distribution of clay minerals in the oceans: Sedimentology, v. 13, p. 21–43.Google Scholar
  33. Shaw, D.B., and C.E. Weaver. 1965. The mineralogical composition of shales: Jour. Sed. Petrol., v. 35, p. 213–222.Google Scholar
  34. Sheppard, R.A., and A.J. Gude, 3rd. 1973. Zeolites and Associated Authigenic Silicate Minerals in Tuffaceous Rocks of the Big Sandy Formation, Mohave County, Arizona. U.S. Geol. Survey Prof. Paper 830, 36 pp.Google Scholar
  35. Spears, D.A. 1970. A kaolinite mudstone (tonstein) in the British Coal Measures: Jour. Sed. Petrol., v. 40, p. 386–394.Google Scholar
  36. Suchecki, R.K., E.A. Perry, and J.F. Hubert. 1977. Clay petrology of Cambro-Ordovician continental margin, Cow Head Klippe, western Newfoundland: Clays Clay Minerals, v. 25, p. 163–170.Google Scholar
  37. Sudo, T., and S. Shimoda, Eds. 1978. Clays and Clay Minerals of Japan (Developments in Sedimentology, v. 26 ). Elsevier, North Holland Publ. Co., AmsterdamOxford-New York, 344 pp.Google Scholar
  38. Thompson, G.R., and J. Hower. 1975. The mineralogy of glauconite: Clays Clay Minerals, v. 23, p. 289–300.Google Scholar
  39. Thorez, J. 1975. Phyllosilicates and Clay Minerals: A Laboratory Handbook for Their X-Ray Diffraction Analysis. Editions G. Lelotte, Dison, Belgium, 579 pp.Google Scholar
  40. van Houten, F.B. 1962. Cyclic sedimentation and the origin of analcime-rich Upper Triassic Lockatong Formation, west-central New Jersey and adjacent Pennsylvania: Amer. Jour. Sci., v. 260, p. 561–576.Google Scholar
  41. Van Olphen, H. and J. J. Fripiat, Eds. 1979. Data Handbook for Clay Materials and other Non-Metallic Minerals. Pergamon Press, Oxford, New York, Toronto, 346 pp.Google Scholar
  42. Weaver, C.E. 1963. Interpretive value of heavy minerals from bentonites: Jour. Sed. Petrol., v. 33, p. 343–349.Google Scholar
  43. Weaver, C.E. and L.D. Pollard. 1973. The Chemistry of Clay Minerals. (Developments in Sedimentology, No. 15 ), Elsevier Scientific Publ. Co., Amsterdam, 205 pp.Google Scholar
  44. Wise, S.W., and F.M. Weaver. 1973. Origin of cristobalite-rich Tertiary sediments in the Atlantic and Gulf coastal plain: Trans. Gulf Coast Assoc. Geol. Socs., v. 23, p. 305–323.Google Scholar
  45. Yaalon, D.H. 1962. Mineral composition of average shale: Clay Minerals Bull., v. 5, p. 31–36.Google Scholar

Geochemistry

  1. Albrecht, P., M. Vandenbroucke, and M. Mandengué. 1976. Geochemical studies on the organic matter from the Douala Basin (Cameroon). I. Evolution of the extractable organic matter and the formation of petroleum: Geochim. Cosmochim. Acta, v. 40, p. 791–799.Google Scholar
  2. Baker, D.R. 1972. Organic geochemistry and geological interpretations: Jour. Geol. Education, v. 20, p. 221–234.Google Scholar
  3. Björlykke, K. 1974, Geochemical and mineralogical influence of Ordovician island arcs on epicontinental clastic sedimentation. A study of Lower Paleozoic sedimentation in the Oslo region, Norway: Sedimentology, v. 21, p. 251–272.Google Scholar
  4. Bowie, S.H.U., J. Dawson, M.J. Gallagher, and D. Ostie. 1966. Potassium-rich sediments in the Cambrian of northwest Scotland: Trans. Inst. Mining Metallurgy, v. 75, B125–B145, and Discussion in v. 76, 1966, p. B60–B69.Google Scholar
  5. Cazes, P., and Y. Reyre. 1976. La fossilisation du kérogène en milieu argilo-carbonâte; Etudé statistique des ses liaisons avec les propriétés lithologiques et pétrologiques dans l’Oxfordien du Bassin de Paris (partie orientale): Bull. Bur. Rech. Geol. Minieres, France, Ser. 2, Sec. 4, p. 85–102.Google Scholar
  6. Cody, R.D. 1971. Adsorption and reliability of trace elements as environment indicators of shales: Jour. Sed. Petrol., v. 41, p. 461–471.Google Scholar
  7. Degens, E.T., E.G. Williams, and M.L. Keith. 1957. Environmental studies of Carboniferous sediments, Part I: Geochemical criteria for differentiating marine and fresh-water shales: Amer. Assoc. Petrol. Geol. Bull., v. 41, p. 2427–2455.Google Scholar
  8. Englund, J-O., and P. Jorgensen. 1973. A chemical classification system for argillaceous sediments and factors affecting their composition: Geol. fören Stockholm Förh., v. 95, p. 87–97.Google Scholar
  9. Fritz, B. 1975. Étude Thermodynamique et Simulation des Réactions entre Minéraux et Solution. Application a la Géochimie des Alterations et des eaux Continentales: (Bur. Rech. Geol. Minieres-Institut de Geologie, Strasbourg, Memoire Sciences Geologiques, No. 41, 152 pp.Google Scholar
  10. Hudson, J.D. 1978. Concretions, isotopes, and the diagenetic history of the Oxford Clay (Jurassic) of central England: Sedimentology, v. 25, p. 339–370.Google Scholar
  11. Jux, U., and U. Manze. 1974. Milieu-Indikationen im Devon des Bergischen Landes mittels Kohlenstoff-Isotopen. Neues Jahrb. Geol. Paläeontol., Monatsh., n. 6, p. 353–373.Google Scholar
  12. Katada, M., H. Isomi, E. Omori, and T. Yamada. 1963. Chemical composition of Paleozoic rocks from northern Kiso District and of Toyoma Clay Slates in Kitakami Mountainland: I. Chemical composition of pelitic rocks: Japanese Assoc. Mineral. Petrol. Econ. Geol., v. 49, p. 85–100.Google Scholar
  13. Kepferle, R.C. 1959. Uranium in Sharon Springs Member of Pierre Shale, South Dakota and Northeastern Nebraska. U.S. Geol. Survey Bull. 1046-R, p. 577–604.Google Scholar
  14. Kimble, B.J., J.R. Maxwell, R.P. Philip, G. Eglinton, P. Albrecht, A. Ensminger, P. Arpino and G. Ourisson. 1974. Tri-and tetraterpenoid hydrocarbons in the Messel Oil Shale: Geochim. Cosmochim. Acta, v. 38, p. 1165–1181.Google Scholar
  15. Manheim, F.T., J.C. Hathaway, F.J. Flanagan, and J.D. Fletcher. 1976. Marine mud, MAG-1, from the Gulf of Maine. In: F.J. Flanagan, Ed., Descriptions and Analyses of Eight New USGS Rock Standards. U.S. Geological Survey Prof. Paper 840, p. 25–28.Google Scholar
  16. Prashnowsky, A.A. 1971 Biogeochemische Untersuchungen an Tonsteinen des Ruhrkarbons: Geol. Rundschau, v. 60, p. 744–812.Google Scholar
  17. Roaldset, E. 1972. Mineralogy and geochemistry of Quaternary clays in the Numedal area, southern Norway: Norsk Geol. Tidsskrift, v. 52, p. 335–369.Google Scholar
  18. Schultz, L.G., H.A. Tourtelot, and F.J. Flanagan. 1976. Cody Shale SCO-1, from Natrona County, Wyoming. In: F.J. Flanagan, Ed.: Descriptions and Analayses of Eight New USGS Rock Standards. U.S. Geological Survey Prof. Paper 840, p. 21–23.Google Scholar
  19. Shaw, D.M. 1956. Geochemistry of pelitic rocks. Ill: Major elements and general geochemistry: Geol. Soc. Amer. Bull., v. 67, p. 919–934.Google Scholar
  20. Swain, F.M., and N.A. Rogers. 1966. Stratigraphic distribution of carbohydrate residues in Middle Devonian Onondaga beds of Pennsylvania and western New York: Geochim. Cosmochim. Acta, v. 30, p. 497–509.Google Scholar
  21. Tardy, Y. 1975. Element partition ratios in some sedimentary environments. I: Statistical treatments. II: Studies on North American black shales: Sci. Geol., v. 28, p. 59–95.Google Scholar
  22. Tardy, Y., and R.M. Garrels. 1974. A method of estimating the Gibbs energies of for- mation of layer silicates: Geochim. Cosmochim. Acta, v. 38, p. 1101–1116.Google Scholar
  23. Tardy, Y., and R.M. Garrels. 1975. Position of the Pierre Shale, Great Plains Region. U.S. Geol. Survey Prof. Paper 390, 74 pp.Google Scholar
  24. Tourtelot, H.A. 1962. Preliminary Investigation of the Geologic Setting and Chemical v 521 pp. 123–143Google Scholar
  25. Tourtelot, E.B. 1970. Selected Annotated Bibliography of Minor-Element Content of Marine Black Shales and Related Sedimentary Rocks, 1930–1965. U.S. Geol. Survey Bull. 1293, 118 pp.Google Scholar
  26. Vine, J.D., and E.B. Tourtelot. 1970. Geochemistry of black shale deposits: A summary report: Econ. Geol., v. 65, p. 253–272.Google Scholar

Petrology

  1. Bates, T.F., and E.O. Strahl. 1957. Mineralogy, petrography, and radioactivity of representative samples of Chattanooga Shale: Geol. Soc. Amer. Bull., v. 68, p. 1305–1313.Google Scholar
  2. Bitterli, P. 1963. Aspects of the genesis of bituminous rock sequences: Geol. Mijnbouw, v. 42, p. 183–201.Google Scholar
  3. Blatt, H., and D.J. Schultz. 1976. Size distribution of quartz in mudrocks: Sedimentology, v. 23, p. 857–866.Google Scholar
  4. Bohor, B.F., and R.E. Hughes. 1971. Scanning electron microscopy of clays and clay minerals: Clays and Clay Minerals, v. 19, p. 49–54.Google Scholar
  5. Burger, K. 1963. Kaolin-Ubergangstonstein, das genetisch-fazielle, bilaterale Bindeglied zwischen Kaolin-Kohlentonstein and Kaolin-Pseudomorphosentonstein. Geol. Mitt., v. 4, p. 115–153.Google Scholar
  6. Carozzi, A.V. 1960. Microscopic Sedimentary Petrology. John Wiley and Sons, New York, 485 pp.Google Scholar
  7. Droste, J.B., and C.J. Vitaliano. 1973. Tioga Bentonite (Middle Devonian) of Indiana: Clays Clay Minerals, v. 21, p. 9–13.Google Scholar
  8. Delmas, M.R. L’etude de la diagenüse des südiments carbonates par l’utilization de plaques ultra-minces. Bull. Centre Rerch. PauüSNPA, v. 8, p. 95–109.Google Scholar
  9. Diamond, S. 1970. Pore size distribution in clays: Clays Clay Minerals, v. 18, p. 7–23.Google Scholar
  10. Folk, R.L. 1960. Petrography and origin of the Tuscarora, Rose Hill, and Keefer Formations, Lower and Middle Silurian of eastern West Virginia: Jour. Sed. Petrol., v. 30, p. 1–59.Google Scholar
  11. Folk, R.L. 1962. Petrography and origin of the Silurian Rochester and McKenzie Shales, Morgan County, West Virginia: Jour. Sed. Petrol., v. 32, p. 539–578.Google Scholar
  12. Fraser, G.S., and A.T. James. 1969. Radiographic Exposure Guides for Mud, Sandstone, Limestone, and Shale. Illinois Geol. Survey Circ. 443, 20 pp.Google Scholar
  13. Gilliot, J.E. 1969. Study of the fabric of fine-grained sediments with the scanning electron microscope: Jour. Sed. Petrol., v. 39, p. 90–105.Google Scholar
  14. Gilliot, J.E. 1970. Fabric of Leda Clay investigated by optical, electron—optical and X-ray diffraction methods: Eng. Geol., v. 4, p. 133–153.Google Scholar
  15. Gipson, M. Jr. 1965. Application of the electron microscope to the study of particle orientation and fissility in shale: Jour. Sed. Petrol., v. 35, p. 408–414.Google Scholar
  16. Gipson, M. Jr. 1966. A study of the relations of depth, porosity and clay mineral orientation in Pennsylvanian shales: Jour. Sed. Petrol., v. 36, p. 888–903.Google Scholar
  17. Heling, D. 1969. Relationships between initial porosity of Tertiary argillaceous sediments and paleosalinity in the Rheintalgraben: Jour. Sed. Petrol., v. 39, p. 246–254.Google Scholar
  18. Heling, D. 1970. Micro-fabrics of shales and their rearrangement by compaction: Sedimentology, v. 15, p. 247–260.Google Scholar
  19. Keller, W.D. 1976. Scan electron micrographs of kaolins collected from diverse environments of origin—I, II and Ill: Clays Clay Minerals, v$124, p. 107–1 13, 1 14–1 17, and 262–264.Google Scholar
  20. Loreau, J.-P. 1970. Contribution a l’étude des calcarénites hétérogènes par l’emploi simultané de la microscope photonique et de la microscope électronique â balayage. Problème particular de la micritisation: Jour. Micros., v. 9, p. 727–734.Google Scholar
  21. Martin, R.T. 1966. Quantitative fabric of wet kaolinite: Clays Clay Minerals, v. 14, p. 271–287.Google Scholar
  22. Meade, R.H. 1961. X-Ray diffractometer method for measuring preferred orientation in clays. U.S. Geol. Survey Prof. Paper 424B, pp. 273–276.Google Scholar
  23. Moreland, G., F. Ingram, and H.H. Banks Jr. 1972. Preparation of doubly polished thin sections. In: W.G. Melson, Ed., Mineral Science Investigations. Smithsonian Contributions to the Earth Sciences, 1969–1971, v. 9, p. 93–94.Google Scholar
  24. Morgenstern, N.R., and J.S. Tchalenko. 1967. The optical determination of preferred orientation in clays and its application to the study of microstructures in consolidated kaolin—I. and II: Proc. Royal Soc. London, 300A, p. 218–250.Google Scholar
  25. O’Brien, N.R. 1968. Electron microscope study of black shale fabric: Naturwissenschaften, v. 55, p. 490-491.Google Scholar
  26. O’Brien, N.R. 1970. The fabric of shale—An electron-microscope study: Sedimentology, v. 15, p. 229–246.Google Scholar
  27. Odom, I.E. 1967. Clay fabric and its relation to structural properties in mid-continent Pennsylvanian sediments: Jour. Sed. Petrol., v. 37, p. 610–623.Google Scholar
  28. Piper, D.J.W. 1972. Turbidite origin of some laminated mudstones: Geol. Mag., v. 109, p. 115–126.Google Scholar
  29. Pryor, W.A., and W.A. Van Wie. 1971. The “sawdust sand”; An Eocene sediment of floccule origin: Jour. Sed. Petrol., v. 41, p. 763–769.Google Scholar
  30. Pusch, R. Microstructural features of Pre-Quaternary clays: Stockholm Contrib. Geol., v. 24, p. 1–24.Google Scholar
  31. Scotford, D.M. 1965. Petrology of the Cincinnatian Series shales and environmental implications: Geol. Soc. Amer. Bull., v. 76, p. 193–222.Google Scholar
  32. Siever, R., and M. Kastner. 1972. Shale petrology by electron microprobe; Pyrite–chlorite relations: Jour. Sed. Petrol., v. 42, p. 350–355.Google Scholar
  33. Silverman, E.N., and T.F. Bates. 1960. X-Ray diffraction study of orientation in Chattanooga Shale: Amer. Mineral., v. 45, p. 60–68.Google Scholar
  34. Skocek, V. 1973. Contribution to the problem of tonstein origin: Casopis Mineral. Geol., v. 18, p. 233–242.Google Scholar
  35. Tchalenko, J.S., A.D. Burnett, and J. Hung. 1971. The correspondence between optical and X-ray measurements of particle orientation in clays: Clays Clay Minerals, v. 9, p. 47–70.Google Scholar
  36. Urbain, P. 1951. Recherches Pétrographiques at Géochimiques sur Deux Séries de Roches Argileuses; 1°, Lias et Oolithique du Calvados; 2° Eocene et Oligocène de la région de Paris. Mémoirs de la Carte Géologique Détaillée de la France, Paris, Imprimerie Nationale, 278 pp.Google Scholar
  37. Weaver, C.E. 1958. Geologic interpretation of argillaceous sediments. Part II—Clay petrology of Upper Mississippian–Lower Pennsylvanian sediments of central United States: Amer. Assoc. Petrol. Geol. Bull., v. 42, p. 272–309.Google Scholar
  38. Weaver, C.E. 1968. Electron microprobe study of kaolin: Clays Clay Minerals, v. 16, p. 187–189.Google Scholar
  39. Westgate, J.A. 1968. Surficial geology of the Foremost–Cypress Hills area: Alberta Research Council Bull. 22, Calgary, Alberta, 121 pp.Google Scholar

Paleontology and Paleoecology

  1. Anderson, H.V. 1961. Genesis and Paleontology of the Mississippi Mudlumps. Part Il—Foraminifera of the Mudlumps, Lower Mississippi River Delta: Louisiana Geol. Survey Bull. 35, 208 pp.Google Scholar
  2. Bretsky, P. 1970. Late Ordovician Benthic Marine Communities in North-Central New York. New York State Museum and Sci. Ser. Bull. 414, 34 pp.Google Scholar
  3. Byers, C.W. 1974. Shale fissility: Relation to bioturbation: Sedimentology, v. 21, p. 479–484.Google Scholar
  4. Byers, C.W. 1977. Biofacies patterns in euxinic basins: A general model. Soc. Econ. Paleontol. Mineral. Spec. Publ. 25, p. 5–17.Google Scholar
  5. Dailey, D.H. Early Cretaceous Foraminifera from the Budden Canyon Formation, Northwestern Sacramento Valley, California: Univ. Calif. Publ. Geol. Sci., v. 106, 111 pp.Google Scholar
  6. Frush, M.P., and D.L. Eicher. 1975. Cenomanian and Turonian foraminifera and paleonenvironments in the Big Bend region of Texas and Mexico. In: W.G.E. Caldwell, Ed., The Cretaceous System in the Western Interior of North America, Geol. Assoc. Canada Spec. Paper 13, p. 278–301.Google Scholar
  7. Gill, J.R., and W.A. Cobban. 1973. Stratigraphy and Geologic History of the Montana Group and Equivalent Rocks, Montana, Wyoming, and North and South Dakota. U.S. Geol. Survey Prof. Paper 776, 37 pp.Google Scholar
  8. Grant, R.E. 1966. Spine arrangement and life habits of the productoid Brachiopod Waagenoconcha: Jour. Paleontol., v. 40, p. 1063–1069.Google Scholar
  9. Hills, L.V., and A.A. Levinson. 1975. Boron content and paleoecologic interpretation of the Bearpaw and contiguous Upper Cretaceous strata in the Strathmore Well of Southern Alberta. In: W.G.E. Caldwell, Ed., The Cretaceous System in the Western Interior of North America, Geol. Assoc. Canada Spec. Paper 13, p. 411–415.Google Scholar
  10. Howard, J.D., and R.W. Frey. 1975. Estuaries of the Georgia coast, U.S.A.: Sedimentology and biology: Senckenbergiana Maritima, v. 7, p. 1–305.Google Scholar
  11. Imbrie, J. 1955. Quantitative lithofacies and biofacies study of Florena Shale (Permian) of Kansas: Amer. Assoc. Petrol. Geol. Bull., v. 39, p. 649–670.Google Scholar
  12. Izett, G.A., W.A. Cobban, and J.R. Gill. 1971. The Pierre Shale near Kremmling, Colorado and its correlation to the East and the West. U.S. Geol. Survey Prof. Paper 684-A, 19 pp.Google Scholar
  13. Jones, R.L., and W.W. Hay. 1975. Bioliths. In: J.E. Gieseking, Ed., Soil Components. Springer-Verlag, New York, v. 2, p. 481–496.Google Scholar
  14. Müller, German. 1971. Coccoliths: Important rock-forming elements in bituminous shales of Central Europe: Sedimentology, v. 17, p. 119–124.Google Scholar
  15. Murphy, M.A. 1975. Paleontology and stratigraphy of the Lower Chickabally Mud-stone (Barremian–Aptian) in the Ono quadrangle, northern California: Univ. Calif. Publ. Geol. Sci., v. 113, 52 pp.Google Scholar
  16. Oliver, W.A. Jr., W. de Witt Jr., J.M. Dennison, D.M. Hoskins, and J.W. Huddle. 1969. Correlation of Devonian Rock Units in the Appalachian Basin. U.S. Geol. Survey Oil and Gas Invest. Chart OC-64.Google Scholar
  17. Reineck, H-E. 1963. Sedimentgefüge im Bereich der südlichen Nordsee. Abh. Senckenb. Naturf. Ges. 505, 64 pp.Google Scholar
  18. Reiskind, J. 1975. Marine concretionary faunas of the uppermost Bearpaw Shale (Maestrichtian) in eastern Montana and southwestern Saskatchewan. In: W.G.E. Caldwell, Ed., The Cretaceous System in the Western Interior of North America. Geol. Assoc. Canada Spec. Paper 13, p. 235–252.Google Scholar
  19. Rhoads, D.C. 1970. Mass properties, stability, and ecology of marine muds related to burrowing activity. In: T.P. Crimes and J.C. Harper, Eds., Trace Fossils. Geol. Jour. Spec. Issue 3, p. 391–406.Google Scholar
  20. Thompson, G.G. 1972. Palynologic correlation and environmental analysis within the marine Mancos Shale of southwestern Colorado: Jour. Sed. Petrol., v. 42, p. 287–300.Google Scholar
  21. Waage, K.M. 1964. Origin of repeated fossiliferous concretion layers in the Fox Hills Formation. In: D.F. Merriam, Ed., Symposium on Cyclic Sedimentation. Kansas Geol. Survey Bull. 169, p. 541–563.Google Scholar
  22. Williams, E.G. 1960. Marine and freshwater fossiliferous beds in the Pottsville and Allegheny Groups of western Pennsylvania: Jour. Paleontol., v. 34, p. 908–922.Google Scholar
  23. Zangerl, R., and E.S. Richardson Jr. 1963. The Paleoecologic History of Two Pennsylvanian Black Shales: Fieldiana Geol. Mem., v. 4, 352 pp.Google Scholar

Shales in Ancient Basins

  1. Akhtar, K., and V.K. Srivastava. 1976. Ganurgarh Shale of southeastern Rajasthan, India: A Precambrian regressive sequence of lagoon—tidal flat origin: Jour. Sed. Petrol., v. 46, p. 14–21.Google Scholar
  2. Andrews, P.B., and A.T. Ovenshine. 1975. Terrigenous silt and clay facies; deposits of the early phase of ocean basin evolution. In: J.P. Kennet, R.E. Houtz, P.B. Andrews, A.R. Edwards, V.A. Gostim, Marta Hajos, M.A. Hampton, D.G. Jenkins, S.V. Margolis, A.T. Ovenshine, and K. Perch-Nielson, Initial Reports of Deep Sea Drilling Project, v. 29, p. 1049–1063.Google Scholar
  3. Asquith, D.O. 1974. Sedimentary models, cycles, and deltas, Upper Cretaceous, Wyoming, in Rocky Mountain Symposium: Amer. Assoc. Petrol. Geol. Bull., v. 58, p. 2274–2283.Google Scholar
  4. Arthur, M.A., and S.O. Schlanger. 1979. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields. Amer. Assoc. Petrol. Geol. Bull. v. 63, p. 870–885.Google Scholar
  5. Berger, W.H., and U. von Rad. 1972. Cretaceous and Cenozoic sediments from the Atlantic Ocean. In: D.E. Hayes and A.C. Pimm, Eds., Initial Reports of the Deep Sea Drilling Project. Natl. Sci. Foundation, Washington, D.C., v. 14 (Leg 14 ), p. 787–954.Google Scholar
  6. Berry, W.B.N., and A.J. Boucot. 1967. Pelecypod—graptolite association in the Old World Silurian: Geol. Soc. Amer. Bull., v. 78, p. 1515–1522.Google Scholar
  7. Berry, W.B. N., and Pat Wilde. 1978. Progressive ventilation of the oceans —An explanation for the distribution of Lower Paleozoic black shales: Amer. Jour. Sci., v. 278, p. 257–275.Google Scholar
  8. Byers, C.W., and D.W. Larson. 1979. Paleoenvironments of Mowry Shale (Lower Cretaceous), Western and Central Wyoming: Amer. Assoc. Petrol. Geol. Bull., v. 63, p. 354–375.Google Scholar
  9. Cassidy, M.M. 1968. Excello Shale, northeastern Oklahoma: Clue to locating buried reefs: Amer. Assoc. Petrol. Geol. Bull., v. 52, p. 295–312.Google Scholar
  10. Christensen, L., S. Fregerslev, A. Simonsen, and J. Thiede. 1973. Sedimentology and depositional environment of Lower Danian Fish Clay from Stevns Klint, Denmark: Bull. Geol. Soc. Denmark, v. 22, p. 193–212.Google Scholar
  11. Cline, L.M. 1966. Late Paleozoic rocks of Ouachita Mountains, a flysch facies. In: Kansas Geol. Soc. Guide Book, 29th Field Conf. on Flysch Facies and Structure of the Ouachita Mountains, November 1966, pp. 91–111.Google Scholar
  12. Collinson, J.D. 1969. The sedimentology of the Grindslow Shales and the Kinder-scout Grit: A deltaic complex in the Namurian of northern England: Jour. Sed. Petrol., v. 39, p. 194–221.Google Scholar
  13. Dailly, G. 1975. Some remarks on regression and transgression in deltaic sediments. In: C.J. Vorath, E.R. Parker, and D.J. Glass, Eds., Canada’s Continental Margins and Offshore Petroleum Exploration. Canadian Soc. Petrol. Geol., Mem. 4, p. 791–820.Google Scholar
  14. Davis, J.C. 1970. Petrology of Cretaceous Mowry Shale of Wyoming: Amer. Assoc. Petrol. Geol. Bull., v. 54, p. 487–502.Google Scholar
  15. Dickas, A.B., and J.L. Payne. 1967. Upper Paleocene buried channel in Sacramento Valley, California: Amer. Assoc. Petrol. Geol. Bull., v. 51, p. 873–882.Google Scholar
  16. Drake, A.A. Jr., and J.B. Epstein. 1967. The Martinsburg Formation ( Middle and Upper Ordovician) in the Delaware Valley, Pennsylvania–New Jersey. U.S. Geol. Survey Bull. 1244, 16 pp.Google Scholar
  17. Dumitriu, M., and C. Dumitriu. 1968. A statistical model of the black shales furrow—Eastern Carpathians: Rev. Roum. Geol. Geophys. Geogr. Ser. Geol., v. 12, p. 99–107.Google Scholar
  18. Einsele, G., únd R. Mosebach. 1955. Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura. Neues Jb. Geol. u. Palöntol. Abh. 101, p. 319–430.Google Scholar
  19. Ewing, J.I., and C.H. Hollister. 1972. Regional aspects of deep-sea drilling in the western North Atlantic. In: C.D. Hollister, J.I. Ewing and others, Initial Reports of Deep Sea Drilling Project 11 (Leg 11 ). Natl. Sci. Foundation, Washington, D.C., p. 951–973.Google Scholar
  20. Ferm, J.C., and R.A. Melton. 1977. A Guide to the Cored Rocks in the Pocahontas Basin. Carolina Coal Group, Geol. Dept., Univ. South Carolina, Columbia, S.C., 92 pp.Google Scholar
  21. Foscolos, A.E., and D.F. Stott. 1975. Degree of Diagenesis, Stratigraphic Correlations and Potential Sediment Sources of Lower Cretaceous Shale of Northeastern British Columbia. Canadian Geol. Survey Bull. 250, 46 pp.Google Scholar
  22. Gill, J.R., and W.A. Cobban. 1961. Stratigraphy of Lower and Middle Parts of the Pierre Shale, Northern Great Plains. U.S. Geol. Survey Prof. Paper 424-D, pp. 185–191.Google Scholar
  23. Gill, J.R., W.A. Cobban, and L.G. Schultz. 1972. Stratigraphy and Composition of the Sharon Springs Member of the Pierre Shale in Western Kansas. U.S. Geol. Survey Prof. Paper 728, 50 pp.Google Scholar
  24. Glick, E.E. 1975. Arkansas and northern Louisiana. In: E.D. McKee and E.J. Crosby Coordinators, Paleotectonic Investigations of the Pennsylvanian System in the United States. Part I: Introduction and Regional Analysis of the PennsylvanianGoogle Scholar
  25. Goodson, J.L., Ed. 1964. Shale Environments of the Mid-Cretaceous Section Central Texas—A Field Guide. Baylor Univ. Geol. Sco., Waco, Texas, 77 pp.Google Scholar
  26. Gray, H.H. 1972. Lithostratigraphy of the Maquoketa Group (Ordovician) in Indiana. Indiana Geol. Survey Spec. Rept. 7, 31 pp.Google Scholar
  27. Greiner, H.R. 1962. Facies and sedimentary environments of Albert Shale, New Brunswick: Amer. Assoc. Petrol. Geol. Bull., v. 46, p. 219–234.Google Scholar
  28. Gutschick, R.C., M. McLane, and J. Rodriguez. 1976. Summary of Late Devonian—Early Mississippian biostratigraphic framework in western Montana. In: Guidebook, The Tobacco Root Geological Society, Field Conf., Montana Bur. Mines and Geol., Spec. Publ. 73, p. 91–124.Google Scholar
  29. Hallam, A., and M.J. Bradshaw. 1979. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. Jour. Geol. Soc., v. 136, p. 157–164.Google Scholar
  30. Hattin, D.E. 1965. Stratigraphy of the Graneros Shale (Upper Cretaceous) in Central Kansas. Kansas Geol. Survey Bull. 178, 83 pp.Google Scholar
  31. Heckel, P.H. 1972. Ancient shallow marine environments. In: J.K. Rigby and W.K. Hamblin, Eds., Recognition of Ancient Sedimentary Environments. Soc. Econ. Paleontol. Mineral. Spec. Publ. 16, p. 226–286.Google Scholar
  32. Heckel, P.H. 1972. Cyclothems of Mid-Continent North America: Amer. Assoc. Petrol. Geol. Bull., v. 61, p. 1045–1068.Google Scholar
  33. Hesse, R. 1975. Turbiditic and non-turbiditic mudstone of Cretaceous flysch sections of the East Alps and other basins: Sedimentology, v. 22, p. 387–416.Google Scholar
  34. Hoover, K.V. 1960. Devonian—Mississippian Shale Sequence in Ohio. Ohio.Geol. Survey Inf. Circ. 27, 154 pp.Google Scholar
  35. Hoyt, W.V. 1959. Erosional channel in the Middle Wilcox near Yoakum, Lavaca County, Texas: Trans. Gulf Coast Assoc. Geol. Socs. v. 9, p. 41–50.Google Scholar
  36. Kauffman, E.G. 1969. Cretaceous marine cycles of the western interior: Mountain Geol., v. 6, p. 227–245.Google Scholar
  37. Lewis, T.L., and J.F. Schwietering. 1971. Distribution of the Cleveland black shale in Ohio: Geol. Soc. Amer. Bull., v. 82, p. 3477–3483.Google Scholar
  38. Lineback, J.A. 1970. Stratigraphy of the New Albany Shale in Indiana: Indiana Geol. Surv. Bull., v. 44, 73 pp.Google Scholar
  39. Ludwig, G. 1964. Divisâo Estratigrâfico-Faciologica do Paleozóico da Bacia Amazônica. Petrobrâs, Secdo de Explorcâo de Petróleo, Publ. 1, 55 pp.Google Scholar
  40. MacKenzie, W.S. 1972. Fibrous calcite, a Middle Devonian geologic marker, with stratigraphic significance, District of MacKenzie, Northwest Territories: Canadian Jour. Earth Sci., v. 9, p. 1431–1440.Google Scholar
  41. McGugan, A. 1965. Occurrence and persistence of thin shelf deposits of uniform lithology: Geol. Soc. Amer. Bull., v. 76, p. 125–130.Google Scholar
  42. Meyers, R.L., and D.C. van Siclen. 1964. Dynamic phenomena of sediment compaction in Matagorda County, Texas: Trans. Gulf Coast Assoc. Geol. Socs., v. 14, p. 241–252.Google Scholar
  43. Morris, R.C. 1974. Carboniferous rocks of the Ouachita Mountains, Arkansas: A study of facies patterns along the unstable slope and axis of a flysch trough. In: G. Briggs, Ed., Carboniferous Rocks of the Southeastern United States. Geol. Soc. Amer. Spec. Paper 148, p. 241–280.Google Scholar
  44. Musgrave, A.W., and W.G. Hicks. 1968. Outlining shale masses by geophysical methods. In: J. Braunstein, and G.D. O’Brien, Eds., Diapirism and Diapirs. Amer. Assoc. Petrol. Geol. Mem. 8, p. 122–136.Google Scholar
  45. Nixon, R.P. 1973. Oil source beds in the Cretaceous Mowry Shale of northwestern interior United States: Amer. Assoc. Petrol. Geol. Bull., v. 57, p. 136–161.Google Scholar
  46. Picard, M.D., and L.R. High Jr. 1968. Sedimentary cycles in the Green River Formation (Eocene), Uinta Basin, Utah: Jour. Sed. Petrol., v. 38, p. 378–383.Google Scholar
  47. Pryor, W.A., and H.D. Glass. 1961. Cretaceous—Tertiary clay mineralogy of the Upper Mississippi Embayment: Jour. Sed. Petrol., v. 31, p. 38–51.Google Scholar
  48. Schermerhorn, L.J.G. 1974. Late Precambrian mixtites: Glacial and/or nonglacial? Amer. Jour. Sci., v. 274, p. 673–824.Google Scholar
  49. Selley, R.C. 1976. The habitat of North Sea oil: Proc. Geol. Assoc., v. 87, p. 359–388.Google Scholar
  50. Shanmugan, G., and L.R. Walker. 1978. Tectonic significance of distal turbidites in the Middle Ordovician Blockhouse and lower Siever Formations in east Tennessee. Amer. Jour. Sci., v. 278, p. 551–578.Google Scholar
  51. Slaughter, M., and J.W. Earley. 1965. Mineralogy and Geological Significance of the Mowry Bentonites, Wyoming. Geol. Soc. Amer. Spec. Paper 83, 95 pp.Google Scholar
  52. Spencer, A. M., Ed. 1974. MesozoicüCenozoic Orogenic Belts. Scottish Acad. Press for the Geol. Soc., Edinburgh and London, Spec. Publ. 4, 809 pp.Google Scholar
  53. Stehli, F.G., W.B. Creath, C.F. Upshaw, and J.M. Forgotson Jr. 1972. Depositional history of Gulfian Cretaceous of East Texas Embayment: Amer. Assoc. Petrol. Geol. Bull., v. 56, p. 38–67.Google Scholar
  54. Stel, J.H. 1975. The influence of hurricanes upon the quiet depositional conditions in the Lower Emsian La Vid Shales of Colle (N.W. Spain): Leidse Geol. Med., v. 49, p. 475–486.Google Scholar
  55. Sundelius, H.W. 1970. The Carolina slate belt. In: G.W. Fisher, F.J. Pettijohn, J.C. Reed Jr., and K.N. Weaver, Eds., Studies of Appalachian Geology. Wiley-Interscience, New York, p. 351–367.Google Scholar
  56. Sutton, R.G., Z.P. Bowen, and A.L. McAlester. 1970. Marine shelf environments of the Upper Devonian Sonyea Group of New York: Geol. Soc. Amer. Bull., v. 81, p. 2975–2992.Google Scholar
  57. Sutton, R.G., Z.P. Bowen, and A.L. McAlester. 1970. Tral Appalachian Mountains, U.S.A. Internati. Geol. Cong., 24th Sess., Sec. 6, ed. J. Gill, Montreal, Canada, p. 89–99.Google Scholar
  58. Tweedie, K.A.M. 1968. The stratigraphy and sedimentary structures of the Kimberley Shales in the Evander Goldfield, Eastern Transvaal, South Africa: Geol. Soc. Trans. South Africa, v. 71, p. 235–256.Google Scholar
  59. Valdiya, K.S. 1970. Simla Slates; The Precambrian flysch of the Lesser Himalaya, its turbidites, sedimentary structures and paleocurrents: Geol. Soc. Amer. Bull., v. 81, p. 451–467.Google Scholar
  60. van Houten, F.B. 1964. Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, Central New Jersey and adjacent Pennsylvania. In: D.F. Merriam, Ed., Symposium on Cyclic Sedimentation. Kansas Geol. Survey Bull. 169, Part. 2, p. 497–531.Google Scholar
  61. Villwock, J.A. 1972. Aspectos tectônicos da deposiçäo de folhelhos pretos; Comparaçäo entre a Formaçao Irati e o “Chattanooga Shale”: Pesquisas, n. 1, p. 25–33.Google Scholar
  62. von Gaertner, H.R., H. Kroepelin, H-H. Schmitz, H. Fesser, K. Mädler, H. Jacob, and K. Hoffman. 1968. Zur Kenntnis des nordwestdeutschen Posidonienschiefers. Beihefte Geologischen Jahrbuch, v. 58, 579 pp.Google Scholar
  63. von Gaertner, H.R., H. Kroepelin, H-H. Schmitz 1979. Portion of the southeastern Appalachian Basin: Trans. Gulf Coast Assoc. Geol. Socs., v. 23, p. 41–45.Google Scholar
  64. Wanless, H.R. 1952. Studies of field relations of coal beds. In: Second Conference on Origin and Constitution of Coal. Nova Scotia Dept. Mines and Nova Scotia Res. Found., p. 148–180.Google Scholar
  65. Wanless, H.R. 1964. Local and regional factors in Pennsylvanian cyclic sedimentation. In: D.F. Merriam, Ed., Symposium on Cyclic Sedimentation. Kansas Geol. Survey Bull. 169, Pt. 2, p. 593–606.Google Scholar
  66. Wengerd, S.A., and J.W. Strickland. 1954. Pennsylvanian stratigraphy of Paradox Salt Basin, Four Corners Region, Colorado and Utah: Amer. Assoc. Petrol. Geol. Bull., v. 38, p. 2157–2199.Google Scholar

Burial History

  1. Barker, C. 1972. Aquathermal pressuring: Role of temperature in development of ab- normal-pressure zones: Amer. Assoc. Petrol. Geol. Bull., v. 56, p. 2068–2071.Google Scholar
  2. Bishop, R.S. 1979. Calculated compaction states of thick abnormally pressured shales. Amer. Assoc. Petrol. Geol. Bull. v. 63, p. 918–933.Google Scholar
  3. Braunstein, J., and G.D. O’Brien, Eds. 1968. Diapirism and DiapirsüA Symposium. Amer. Assoc. Petrol. Geol. Mem. 8, 444 pp.Google Scholar
  4. Brooner, F.I. Jr. 1967. Shale diapirs of the Lower Texas Gulf Coast as typified by the North LaWard Diapir: Trans. Gulf Coast Assoc. Geol. Socs., v. 17, p. 126–134.Google Scholar
  5. Bruce, C.H. 1973. Pressured shale and related sediment deformation: Mechanism for development of regional contemporaneous faults: Amer. Assoc. Petrol. Geol. Bull., v. 57, p. 878–886.Google Scholar
  6. Burst, J.F. 1976. Argillaceous sediment dewatering. In: F.A. Donath, Ed., Annual Review of Earth and Planetary Sciences, Annual Reviews, Inc., Palo Alto, Calif., v. 4, p. 293–318.Google Scholar
  7. Chapman, R.E. 1974. Clay diapirism and overthrust faulting: Geol. Soc. Amer. Bull., v. 85, p. 1597–1602.Google Scholar
  8. Conybeare, C.E.B. 1967. Influence of compaction on stratigraphic analysis: Canadian Petrol. Geol. Bull., v. 15, p. 331–345.Google Scholar
  9. Dailly, G.C. 1976. A possible mechanism relating progradation, growth faulting, clay diapirism and overthrusting in a regressive sequence of sediments: Canadian Petrol. Geol. Bull., v. 24, p. 92–116.Google Scholar
  10. Dickey, P.A. 1972. Migration of interstitial water in sediments and the concentra Canadian Petrol. Geol. Bull., v. 24, p. 92–116Google Scholar
  11. Fertl, W.H. 1977. Shale density studies and their application. In: G.D. Hobson, Ed. Developments in petroleum geology-1, G.D. Hobson, ed. London, Applied Science Publications Ltd., p. 293–327.Google Scholar
  12. Hamilton, W. 1974. Map of Sedimentary Basins of the Indonesian Region. U.S. Geol. Survey Map I-875B.Google Scholar
  13. Hanshaw, B.B., and T.B. Coplen. 1973. Ultrafiltration by a compacted clay membrane; II—Sodium ion exclusion at various ionic strengths: Geochim. Cosmochim. Acta, v. 37, p. 2311–2327.Google Scholar
  14. Hedberg, H.D. 1974. Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes: Amer. Assoc. Petrol. Geol. Bull., v. 58, p. 661–673.Google Scholar
  15. Higgins, G.E., and J.B. Saunders. 1967. Report on 1964 Chetham Mud Island, Erin Bay, Trinidad, West Indies: Amer. Assoc. Petrol. Geol. Bull., v. 51, p. 55–64.Google Scholar
  16. Katz, H.R. 1975. Ariel Bank off Gisborne; an offshore Late Cenozoic structure, and the problem of acoustic basement on the east coast, North Island, New Zealand: New Zealand Jour. Geol. Geophys., v. 18, p. 93–107.Google Scholar
  17. Kharaka, Y.F., and F.A.F. Berry. 1973. Simultaneous flow of water and solutes through geological membranes; I—Experimental investigation: Geochim. Cosmochim. Acta, v. 37, p. 2577–2603.Google Scholar
  18. Magara, K. 1975. Reevaluation of montmorillonite dehydration as cause of abnormal pressure and hydrocarbon migration: Amer. Assoc. Petrol. Geol. Bull., v. 59, p. 292–302.Google Scholar
  19. Magara, K. 1976. Water expulsion from clastic sediments during compaction: Direction and volumes: Amer. assoc. Petrol. Geol. Bull., v. 60, p. 543–553.Google Scholar
  20. McCrossan, R.G. 1955. Colour variations in Ireton Shale of Alberta: Canadian Petrol. Geol. Bull., v. 5, p. 48–51.Google Scholar
  21. Meade, R.H. 1966. Factors influencing the early stages of compaction of clays and sands—A review: Jour. Sed. Petrol., v. 36, p. 1085–1101.Google Scholar
  22. Mifflin, M.D. 1970. Mudlumps and suggested genesis in Pyramid Lake, Nevada. In: Hydrology of Deltas. Proc. Internatl. Assoc. Scientific Hydrology, 1969 Bucharest Symposium, v. 1, p. 75–88.Google Scholar
  23. Morgan, J.P. 1961. Genesis and paleontology of the Mississippi River mudlumps; Part 1—Mudlumps at the mouths of Mississippi Rivers. Louisiana Geol. Survey Bull., v. 35, 115 pp.Google Scholar
  24. Morgan, J.P., J.M. Coleman, and S.M. Gagliano. 1968. Mudlumps—Diapiric structures in Mississippi Delta sediments. In: J. Braunstein and G.D. O’Brien, Eds., Diapirism and Diapirs, Amer. Assoc. Petrol. Geol. Mem. 8, p. 145–161.Google Scholar
  25. Oertal, G., and C.D. Curtis. 1972. Clay–ironstone concretions preserving fabrics due to progressive compaction. Geol. Soc. Amer. Bull., v. 83 p. 2597–2606.Google Scholar
  26. Otvos, E.G. 1970. High pressure shales and their deposition facies, southern Louisiana Cenozoic: Jour. Sed. Petrol., v. 40, p. 412–417.Google Scholar
  27. Powers, M.C. 1967. Fluid release mechanisms in compacting marine mudrocks and their importance in oil exploration: Amer. Assoc. Petrol. Geol. Bull., v. 51, p. 1240–1254.Google Scholar
  28. Rieke, H.H., and G.V. Chilingarian. 1974. Compaction of Argillaceous Sediments. Elsevier Scientific Publ. Co., Amsterdam, 424 pp.Google Scholar
  29. Rumeau, J.-L., and C. Sourisse. 1972. Compaction, diagenese et migration dans les sediments argileux: Bull. Centre Rech. Pau SNPA, v. 6, p. 313–345.Google Scholar
  30. Schmidt, G.W. 1973. Interstitial water composition and geochemistry of deep Gulf Coast shales and sandstones: Amer. Assoc. Petrol. Geol. Bull., v$157, p. 321–331; Discussion, p. 715–721.Google Scholar
  31. Sharp, J.M. 1976. Momentum and energy balance equations for compacting sediments: Math. Geol., v. 8, p. 305–322.Google Scholar
  32. Shelton, J.W. 1962. Shale compaction in a section of Cretaceous Dakota Sandstone, northwestern North Dakota: Jour. Sed. Petrol., v. 32, p. 873–877.Google Scholar
  33. Stel, J.H. 1976. Clay diapirism in the Lower Emsian La Vid Shales near Colle, Cantabrian Mountains, N.W. Spain: Geol. Mijnbouw, v. 55, p. 110–116.Google Scholar
  34. White, W.A. 1961. Colloidal phenomena in sedimentation of argillaceous rocks: Jour. Sed. Petrol., v. 31, p. 560–570.Google Scholar

Diagenesis

  1. Aronson, J.L., and J. Hower. 1976. Mechanism of burial metamorphism of argillaceous sediment: 2 Radiogenic argon evidence: Geol. Soc. Amer. Bull., v. 87, p. 738–744.Google Scholar
  2. Björlykke, K. 1973. Origin of limestone nodules in the Lower Paleozoic of the Oslo region: Norsk Geol. Tidsskift, v. 53, p. 419–431.Google Scholar
  3. Blatt, H., and B. Sutherland. 1969. Intrastratal solution of nonopaque heavy minerals in shales: Jour. Sed. Petrol., v. 39, p. 591–600.Google Scholar
  4. Claypool, G.E., A.H. Love, and E.K. Maughan. 1978. Organic geochemistry, incipient metamorphism, and oil generation in black shale members of Phosphoria Formation, western interior United States: Amer. Assoc. Petrol. Geol. Bull., v. 62, p. 98–120.Google Scholar
  5. Dreyer, J.I. 1971. Early diagenesis of clay minerals, Rio Ameca Basin, Mexico: Jour. Sed. Petrol., v. 41, p. 982–994.Google Scholar
  6. Dunoyer de Segonzac, G. 1970. The transformation of clay minerals during diagenesis and low grade metamorphism: A review: Sedimentology, v. 15, p. 281–346.Google Scholar
  7. Durand, B., J. Espitalié, G. Nicaise, and A. Combaz. 1972. Étude de la Matière Organique Insoluble (Kérogene) des Argiles du Toarcien du Bassin de Paris; Premiere Partie, Etude par les Procedes Optiques, Analyse Elementaire, Etude en Microscopie et Diffraction Electroniques: Rev. Inst. Francais du Pétrole, v. 27, p. 865–884.Google Scholar
  8. Etheridge, M.A., and M.F. Lee. 1975. Microstructure of slate from Lady Loretta, Queensland, Australia: Geol. Soc. Amer. Bull., v. 86, p. 13–22.Google Scholar
  9. Gilman, R.A., and W.J. Metzger. 1967. Cone-in-cone concretions from western New York: Jour. Sed. Petrol., v. 37, p. 87–95.Google Scholar
  10. Hallam, A. 1962. A band of extraordinary calcareous concretions in the Upper Lias of Yorkshire, England: Jour. Sed. Petrol., v. 32, p. 840–847.Google Scholar
  11. Hiltabrand, R.R., R.E. Ferrell, and G.K. Billings, 1973. Experimental diagenesis of Gulf Coast argillaceous sediment: Amer. Assoc. Petrol. Geol. Bull., v. 57, p. 338–348.Google Scholar
  12. Holeywell, R.C., and T.E. Tullis. 1975. Mineral reorientation and slaty cleavage in the Martinsburg Formation, Lehigh Gap, Pennsylvania: Geol. Soc. Amer. Bull., v. 86, p. 1296–1304.Google Scholar
  13. Johns, W.D., and A. Shimoyama. 1972. Clay minerals and petroleum-forming reactions during burial and diagenesis: Amer. Assoc. Petrol. Geol. Bull., v. 56, p. 2160–2167.Google Scholar
  14. Long. G., S. Neglia, and L. Favretto. 1968. The metamorphism of the kerogen from Triassic black shales, southeast Sicily: Geochim. Cosmochim. Acta, v. 32, p. 647–656.Google Scholar
  15. Lucas, J., and G. Ataman. 1968. Mineralogical and geochemical study of clay mineral transformations in the sedimentary Triassic Jura Basin (France): Clays Clay Minerals, v. 16, p. 365–372.Google Scholar
  16. McNamara, M. 1965. The Lower Greenschist Facies in the Scottish Highlands: Geol. fören Stockholm, v. 87, p. 347–389.Google Scholar
  17. Mitsui, K., and K. Taguchi. 1977. Silica mineral diagenesis in Neogene Tertiary Shales in the Tempoku District, Hokkaido, Japan: Jour. Sed. Petrol., v. 47, p. 158–167.Google Scholar
  18. Perry, E.A. Jr. 1974. Diagenesis and the K-Ar dating of shales and clay minerals: Geol. Soc. Amer. Bull., v. 85, p. 827–830.Google Scholar
  19. Perry, E.A. Jr., and J. Hower. 1970. Burial diagenesis in Gulf Coast Pelitic sediments: Clays Clay Minerals, v. 18, p. 165–177.Google Scholar
  20. Russell, K.L. 1970. Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico. Geochim. Cosmochim. Acta, v. 34, p. 893–907.Google Scholar
  21. Scholle, P.A., and P.R. Schluger, Eds. 1979. Aspects of Diagenesis: Soc.Econ. Paleont. Mineral. Sp. Pub. 26, 443 pp.Google Scholar
  22. Tullis, T.E. 1976. Experiments on the origin of slaty cleavage and schistosity: Geol. Soc. Amer. Bull., v. 87, p. 745–753.Google Scholar
  23. van Moort, J.E. 1971. A comparative study of the diagenetic alteration of clay minerals in Mesozoic shales from Papua, New Guinea, and in Tertiary shales from Louisiana, U.S.A.: Clays Clay Minerals, v. 19, p. 1–20.Google Scholar
  24. Weaver, C.E. 1967. Potassium, illite and the ocean: Geochim. Cosmochim. Acta, v. 31, p. 2181–2196.Google Scholar
  25. Weaver, C.E., and K.C. Beck. 1971. Clay—Water Diagenesis During Burial: How Mud Becomes Gneiss. Geol. Soc. Amer. Spec. Paper 134, 96 pp.Google Scholar

Thermal History

  1. Bostick, N.H., and V.N. Foster. 1973. Comparison of vitrinite reflectance in coal seams and in kerogen of sandstones, shales and limestones in the same part of a sedimentary section. In: B. Alpern, Ed. Collogue International Petrographie de la Matiero Organique des Sédimentes, Centre National de la Recherche Scientifique, Paris, p. 13–25.Google Scholar
  2. Bostick, N.H., and C.P. Nicksic. 1975. Bibliography and Index of Coal and Dispersed Organic Matter in Sedimentary Rocks; Petrography, Catagenesis, Relation to Petroleum and Natural Gas, and Geochemistry. Illinois State Geol. Survey, Illinois Petrol. No. 108, 92 pp.Google Scholar
  3. Epstein, A.G., J.B. Epstein, and L.D. Harris. 1977. Conodont Color Alteration: An Index to Organic Metamorphism. U.S. Geol. Survey Prof. Paper 995, 27 pp.Google Scholar
  4. Foscolos, A.E., F.G. Powell, and P.R. Gunther. 1976. The use of clay minerals and inorganic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales: Geochim. Cosmochim. Acta, v. 40, p. 953–966.Google Scholar
  5. Grew, E.S. 1974. Carbonaceous material in some metamorphic rocks of New England and other areas: Jour. Geol., v. 82, p. 50–73.Google Scholar
  6. Gutjahr, C.C.M. 1966. Carbonization measurements of pollen grains and spores and their application: Leidse Geol. Med., v. 38, p. 1–29.Google Scholar
  7. Hoefs, J., and M. Frey. 1976. The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps: Geochim. Cosmochim. Acta, v. 40, p. 945–951.Google Scholar
  8. Hood, A., and J.R. Castar O. 1974. Organic metamorphism: Its relationship to petroleum generation and application to studies of authigenic minerals: United Nations Econ. Comm. Asia Far East Coord. Comm. Offshore Prospecting Techology Tech. Bull., v. 8, p. 85–118.Google Scholar
  9. Hood, A., and J.R. Castar O. 1975. Organic metamorphism and the generation of petroleum: Amer. Assoc. Petrol. Geol. Bull., v. 59, p. 986–996.Google Scholar
  10. Hood, A., and J.R. Castar O. 1974. Anthracite anthracite coal ranks associated with “anchimetamorphism,” “very low stage” metamorphism. I, II, and Ill: Koninki. Nederl. Akad. Wetenschappen Amsterdam Proc. Ser. B, v. 77, p. 81–118.Google Scholar
  11. Nanz, R.H. 1953. Chemical composition of Precambrian slates with notes on the geochemical evolution of lutites: Jour. Geol., v. 61, p. 51–64.Google Scholar
  12. Shibaoka, M., A.J.R. Bennett, and K.W. Gould. 1973. Diagenesis of organic matter and occurrence of hydrocarbons in some Australian sedimentary basins: Jour. Australian Petrol. Explor. Assoc., p. 73–80.Google Scholar
  13. Snowden, L.R., and K.J. Roy. 1975. Regional organic metamorphism in the Mesozoic strata of the Sverdrup Basin: Canadian Petrol. Geol. Bull., v. 23, p. 131–148.Google Scholar
  14. Staplin, F.L. 1969. Sedimentary organic matter, organic metamorphism, and oil and gas occurrence: Canadian Petrol. Geol. Bull., v. 17, p. 47–66.Google Scholar

Shale Through Time

  1. Garrels, R.M., and F.T. MacKenzie. 1971. Evolution of Sedimentary Rocks. Norton and Co., New York, 397 pp.Google Scholar
  2. Leventhal, J., S.E. Suess, and P. Cloud. 1975. Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments: Proc. Natl. Acad. Sci., Washington, D.C., v. 72, p. 4706–4710.Google Scholar
  3. Ronov, A.B., and A.A. Migdisov. 1971. Geochemical history of the crystalline basement and the sedimentary cover of the Russian and North American platforms: Sedimentology, v. 16, p. 137–185.Google Scholar
  4. Moort, J.C. 1972. The K20, CaO, MgO and CO2 contents of shales and related rocks and their importance for sedimentary evolution since the Proterozoic. Internatl. Geol. Cong., 24th Sess., Sec. 10, ed. J. Gill, Montreal, Canada, p. 427–439.Google Scholar

Petroleum and Bituminous Shales

  1. Bigarella, J.J. 1972. Geologia da Formacüo Irati. In: Simposio sobre Ciencia e Technologia do Xisto, Curitiba. Academia Brasi leira de Ciencias, Rio de Janiero, 81 PP.Google Scholar
  2. Bitterli, P. 1963. Classification of bituminous rocks of western Europe. Sec. IüGeology and geophysics. In: Proc. 6th World Petroleum Conf., Frankfurt/Main, p. 155–165.Google Scholar
  3. Board on Mineral Resources. 1976. Natural Gas from Unconventional Geologic Sources. Natl. Acad. Sci.–Natl. Res. Council, Commission on Natl. Resources, Washington, D.C., 245 pp.Google Scholar
  4. Borrello, A.V. 1956. Antecedentes relativos al conocimiento de los esquistos y rocas bituminosas del pais. In: Recursos Minerales de la República Argentina, Pt. Ill, Combutibles Sólidos Minerales. Revista Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (Buenos Aires), Ciencias Geologicas, v. 5, pp. 581–642.Google Scholar
  5. Borrello, A.V. 1956 Disciplinary problem being attacked from both ends: Geol. Soc. Amer. Bull., v. 81, p. 985–1000.Google Scholar
  6. Brongersma-Sanders, M. 1971. Origin of major cyclicity of evaporites and bituminous rocks: An actualistic model: Mar. Geol., v. 11, p. 123–144.Google Scholar
  7. Conant, L.C., and V.E. Swanson. 1961. Chattanooga Shale and Related Rocks of Central Tennessee and Nearby Areas. U.S. Geol. Survey Prof. Paper 357, 91 pp.Google Scholar
  8. Duncan, D.C., and V.E. Swanson. 1965. Organic-Rich Shale of the United States and World Land Areas. U.S. Geol. Survey Circ. 523, 30 pp.Google Scholar
  9. Dunham, K. 1961. Black shale, oil and sulphide ore: Advancement Sci., v. 18, p. 1–16.Google Scholar
  10. Goldhaber, Martin. 1978. Euxinic Facies. InThe Encyclopedia of Sedimentology, ed. by R.W. Fairbridge and J. Bourgeois, Eds.: Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pa., p. 296–300.Google Scholar
  11. Hard, E.W. 1931. Black shale deposition in central New York: Amer. Assoc. Petrol. Geol. Bull., v. 15, p. 165–181.Google Scholar
  12. Howbert, V.T. 1974. Index to Publications of the Colorado School of Mines, 1953–1973: Quart. Colorado School of Mines, v. 69 (Suppl.), 140 pp.Google Scholar
  13. Janssens, A., and W. de Witt Jr. 1976. Potential Natural Gas Resources in the Devonian Shales of Ohio. Ohio.Div. Geol. Survey, Geol. Note 3, 11 pp.Google Scholar
  14. Krebs, V.W. 1970. über Schwarzschiefer und bituminüse Kalke im mitteleuropüischen Variscikum. Teil 1üVorkommen in tieten Becken und in abgeschlossenen Teilbecken des offenen Meeres oder auf dem Schelf. Teil 2üVorkommen an der Basis von “Trangressionen” über flache Schelfareale und innerhalb flacher, limnischüfluviatiler Ablagerungsrüume, Problem der Gleichaltrigkeit Schwarzer Schiefer and Bituminüser Kalke: Erdül Kohle-Erdgas, Petrochem, v. 22, p. 2–6, 62–67.Google Scholar
  15. Lamar, J.E., W.J. Armon, and J.A. Simon. 1956. Illinois Oil Shales. Illinois Geol. Survey Circ. 208, 21 pp.Google Scholar
  16. Ludwig, G., and H.H. Schmitz. 1968. Anâlises Faciológicas do Folhelhos Devon- ianos du Grupo Curuâ Bacia Amazônica. Bol. Tec. Petrobras, II, p. 325–346.Google Scholar
  17. Matthews, A.F.M. 1975. UK Oil Shales; Past and Possible Future Exploitation. Dept. energy, Energy Paper No. 1, 20 pp.Google Scholar
  18. Padula, V.T. 1968. Oil shale of the Permian Irati“ Formation, Brazil: Amer. Assoc. Petrol. Geol. Bull., v. 53, pp. 591–602.Google Scholar
  19. Projecto Xistoquümica. 1971. Bibliografia do Xisto. (Oil-Shale Bibliography.) Academia Brasileira de Ciüncias, Instituto Brasilero de Bibliografia e Documentacüo, Rio de Janeiro, Publicacüo Especial Xistoquümica 16, various paging.Google Scholar
  20. Rodrigues, R. 1973. Aplicacâo da geoquimica ao problema de geracâo de hidrocarbonetos na Bacia Amazonica. Anais do 27th Congresso Brasileiro de Geologia ( Aracaju, Sergipe ), p. 53–66.Google Scholar
  21. Rowsell, D.M., and A.M.J. DeSwardt. 1976. Diagenesis in Cape and Karro sediments, South Africa, and its bearing on their hydrocarbon potential: Trans. Geol. Soc. South Africa, v. 79, p. 81–145.Google Scholar
  22. Smith, J.W., and K.E. Stanfield. 1965. Oil shales of the Green River Formation in Wyoming. In: R.H. DeVoto, and R.K. Bitter, Eds.; Sedimentation of Late Cretaceous and Tertiary Outcrops, Rock Springs Uplift, Wyoming. Wyo. Geol. Assoc. 19th ann. Field Conf., p. 167–170.Google Scholar
  23. Smith, J.W., and N.B. Young. 1967. Organic composition of Kentucky’s New Albany Shale: Determination and uses: Chem. Geol., v. 2, p. 157–170.Google Scholar
  24. Smith, S.E., and. W.K. Overbey Jr., Eds. 1975. Bibliography of Upper Devonian Shale-Sequence. U.S. Energy Res. and Develop. Admin. (ERDA), Morgantown Energy Res. Center, Morgantown, West Virginia, 78 pp.Google Scholar
  25. Stevenson, D.L., and D.R. Dickerson. 1969. Organic Geochemistry of the New Albany Shale in Illinois. Illinois Geol. Survey Petroleum Paper 90, 11 pp.Google Scholar
  26. Trudell, L.G., T.N. Beard, and J.W. Smith. 1970. Green River Formation Lithology and Oil Shale Correlations in the Piceance Creek Basin, Colorado. U.S. Dept. Interior, Rept. Invest 7357, 212 pp.Google Scholar
  27. Twenhofel, W.H. 1939. Environments of origin of black shales: Amer. Assoc. Petrol. Geol. v. 23, p. 1178–1198.Google Scholar
  28. Yen, T.F., and G.V. Chilingar, Eds. 1976. Oil Shale. Elsevier Scientific Publ. Co., Amsterdam, 292 pp.Google Scholar
  29. Yen, T.F., Ed. 1976. Science and Technology of Oil Shale. Ann Arbor Science Pub. Inc., Ann Arbor, Michigan, 226 pp.Google Scholar

Shales as Industrial Minerals

  1. Brownell, W.E. 1976. Structural Clay Products. Springer-Verlag, Wien, New York, 231 pp.Google Scholar
  2. Cooper, J.D. 1970. Clays. In: Bur. Mines Mineral Facts and Problems, Eds. staff. U.S. Dept. Interior, Bur. Mines Bull. 650, p. 923–938.Google Scholar
  3. Crockett, R.N., Compiler. 1975. Slate. Institute Geol. Sci., Mineral Res. Consult. Comm., Great Britain, Mineral Dossier No. 12, 26 pp.Google Scholar
  4. Grim, R.E. 1962. Applied Clay Mineralogy. McGraw-Hill Book Co., Inc., New York, 422 pp.Google Scholar
  5. Grim, Ralph E., and Necip Güven, 1978. Bentonites (Developments in Sedimento-logy, v. 24 ): Elsevier Scientific Publishing Co., Amsterdam-Oxford-New York, 256 pp.Google Scholar
  6. Keller, W.D. 1968. Flint clay and a flint—clay facies: Clays Clay Minerals, v. 16, p. 113–128.Google Scholar
  7. Knechtel, M.M., and S.H. Patterson. 1962. Bentonite Deposits of the Northern Black Hills District, Wyoming and South Dakota. U.S. Geol. Survey Bull. 1082M, p. 893–1030.Google Scholar
  8. Murray, H.H. 1976. Clay. In: R.W. Hagemeyer, Ed. Paper Coating Pigments, Tech. Assoc. Paper Pulp Industry Monograph, Ser. 38, 4th ed., p. 69–109.Google Scholar
  9. Patterson, S.H. 1974. Fuller’s Earth and Other Industrial Mineral Resources of the Meigs—Attapulgus—Quincy District, Georgia and Florida. U.S. Geol. Survey Prof. Paper 828, 45 pp.Google Scholar
  10. Patterson, S.H., and J.W. Hosterman. 1958. Geology of the clay deposits in the Olive Hill district, Kentucky: Clays Clay Minerals, Proc. 7, Pergamon Press, London, p. 178–194.Google Scholar
  11. Patterson, S.H., and H.H. Murray. 1975. Clays. In: S.J. Lefond, ed.-in-chief. Industrial Minerals and Rocks, 4th ed. New York, p. 518–585.Google Scholar

Shales as Hosts for Metallic Minerals

  1. Blissenbach, E., and R. Fellerer. 1973. Continental drift and the origin of certain mineral deposits: Geol. Rundschau, v. 62, p. 812–840.Google Scholar
  2. Brongersma-Sanders, M. 1966. Metals of Kupferschiefer supplied by normal sea water: Geol. Rundschau v. 55, p. 365–375.Google Scholar
  3. Dunham, K. 1971. Introductory talk: Rock association and genesis: Soc. Mining Geol., Japan, Spec. Issue 3, p. 167–171.Google Scholar
  4. Schuchert, C. 1915. The conditions of black shale deposition as illustrated by the Kupferschiefer and Lias of Germany: Trans. Amer. Phil. Soc., v. 54, p. 259–269.Google Scholar
  5. Smith, G.E. 1974. Depositional Systems, San Angelo Formation (Permian), North Texas; Facies Control of Red-Bed Copper Mineralization. Texas Bur. Econ. Geol. Rept. Invest. No. 80, Univ. Texas, 74 pp.Google Scholar
  6. Wedepohl, K.H. 1964. Untersuchungen im Kupferschiefer in Nordwestdeutschland; Ein Beitrag zur Deutung der Genese bituminöser Sedimente: Geochim. Cosmochim. Acta, v. 28, p. 305–364.Google Scholar
  7. Wedepohl, K.H. 1971. “Kupferscheifer” as a prototype of syngenetic sedimentary ore deposits: Soc. Mining Geol., Japan, Spec. Issue 3, p. 268–273.Google Scholar

Environmental and Engineering Geology

  1. Brookins, D.G. 1976. Shale as a repository for radioactive waste; the evidence from Oklo: Environ. Geol., v. 1, p. 255–259.Google Scholar
  2. Bryant, W.R., A.P., Deflache, and P.K. Trabant. 1974. Consolidation of marine clays and carbonates. In: A.I. Inderbitzen, Ed., Deep-Sea Sediments, Plenum Press, New York and London, p. 209–244.Google Scholar
  3. Burnett, A.D., and P.G. Fookes. 1974. A regional engineering geological study of the London Clay in the London and Hampshire Basins: Quart. Jour. Eng. Geol., v. 7, p. 257–295.Google Scholar
  4. Cabera, J.G., and I.J. Smalley. 1973. Quickclays as products of glacial action: A new approach to their nature, geology, distribution and geotechnical properties: Eng. Geol., v. 7, p. 115–133.Google Scholar
  5. Cartwright, K., and F.B. Sherman. 1969. Evaluating Sanitary Landfill Sites in Illinois. Illinois Geol. Survey, Environ. Geol. Note 27, 15 pp.Google Scholar
  6. Crawford, C.B. 1968. Quick-clays of eastern Canada: Eng. Geol., v. 2, p. 239–265.Google Scholar
  7. Crooks, J.H.A., and J. Graham. 1972. Stress–strain properties of Belfast estuarine clay: Eng. Geol., v. 6, p. 275–288.Google Scholar
  8. Ferguson, H.F. 1967. Valley stress release in the Allegheny Plateau: Eng. Geol., v. 4, p. 63–71.Google Scholar
  9. Franklin, J.A., and R. Chandra. 1972. The slake-durability test: Internatl. Jour. Rock Mech. Min. Sci., v. 9, p. 325–341.Google Scholar
  10. Galley, J.E. 1968. Subsurface Disposal in Geologic Basins—A Study of Reservoir Strata: Amer. Assoc. Petrol. Geol. Mem. 10, 253 pp.Google Scholar
  11. Gillot, J.E. 1968. Clay in Engineering Geology. Elsevier Scientific Publ. Co., Amsterdam, 296 pp.Google Scholar
  12. Gretener, P.E. 1969. Fluid pressure in porous media, its importance in geology—A review: Canadian Petrol. Geol. Bull., v. 17, p. 255–295.Google Scholar
  13. Hough, B.K. 1957. Basic Soils Engineering. Ronald Press, New York, 513 pp.Google Scholar
  14. Hunt, C.B. 1972. Geology of Soils: Their Evolution, Classification, and Uses. W.H. Freeman and Co., San Francisco, 344 pp.Google Scholar
  15. Member in Mines of Illinois: Their Geology and Stability. III. Geol. Survey, Illinois Minerals Note 72, May, 54 pp.Google Scholar
  16. Jackson, J.O., and P.G. Fookes. 1974. The relationship of the estimated former burial depth of the Lower Oxford Clay to some soil properties: Quart. Jour. Eng. Geol., v. 7, p. 137–179.Google Scholar
  17. Kendall, H.A. 1974. Clay mineralogy and solutions to clay problems in Norway: Jour. Petrol. Technol., v. 26, p. 25–32.Google Scholar
  18. Kerr, P.F., and I.M. Drew. 1968. Quick-clay slides in the U.S.A.: Eng. Geol., v. 2, p. 215–238.Google Scholar
  19. Lambe, T.W., and R.V. Whitman. 1969. Soil Mechanics. John Wiley and Sons, New York, 553 pp.Google Scholar
  20. Legget, R.F. 1967. Soil—its geology and use: Geol. Soc. Amer. Bull., v. 78, p. 1433–1459.Google Scholar
  21. Milling, M.E. 1975. Geologic appraisal of foundation conditions, northern North Sea. (Conference Paper) Oceanology Internatl., Brighton, England, March 16–21, BPS Exhibitions Ltd., London, England, p. 311–319.Google Scholar
  22. Moran, S. 1972. Subsurface Geology and Foundation Conditions in Grand Forks, North Dakota. North Dakota Geol. Survey Misc. Ser. 44, 18 pp.Google Scholar
  23. Poulet, M. 1976. Apport des expériences de mécanique des roches â la géologie structurale des bassins sédimentaires. Rev. Inst. Francais du Pétrole, v. 31, p. 781–822.Google Scholar
  24. Rosenqvist, I. Th. 1966. Norwegian research into the properties of quick clay—A review: Eng. Geol., v. 1, p. 445–450.Google Scholar
  25. Scott, J.S., and E.W. Brooker. 1966. Geological and Engineering Aspects of Upper Cretaceous Shales in Western Canada. Geol. Survey Canada Paper 66–37, 75 pp.Google Scholar
  26. Scully, J. 1973. Landslides in the Pierre Shale in Central South Dakota. South Dakota Dept. Transportation, Pierre, S. Dakota. and Fed. Highway Admin., U.S. Dept. Transportation, Washington, D.C., Shale Study 635 (67), 707 pp.Google Scholar
  27. Smalley, I. 1976. Factors relating to the landslide process in Canadian quickclays: Earth Surf. Process., v. 1, p. 163–172.Google Scholar
  28. Sondhi, V.P., 1966. Note on Landslips on the Dimapur-Manipur Road. InLandslides and Hillside Stability in the Eastern Himalayas. India Geol. Surv. Bull., Ser. B, v. 15, Pt. 1, p. 109–117.Google Scholar
  29. Strazer, R.J., L.K. Bestwick, and S.D. Wilson. 1974. Design considerations for deep retained excavations in over-consolidated Seattle clays: Bull. Assoc. Eng. Geol., v. 11, p. 379–397.Google Scholar
  30. Terzaghi, K., and R.B. Peck. 1968. Soil Mechanics in Engineering Practice. 2nd ed. John Wiley and Sons, New York, 729 pp.Google Scholar
  31. Way, D.S. 1973. Terrain Analysis: A Guide to Site Selection Using Aerial Photographic Interpretation. Dowden, Hutchinson and Ross, Stroudsburg, Pa., 392 pp.Google Scholar
  32. West, J.M., M.P. Moseley, and D.H. Bennett. 1971. The stability of a valley side in weathered shale: Quart. Jour. Eng. Geol., v. 4, p. 1–23.Google Scholar
  33. White, W.A., and M.K. Kyriazis. 1968. Effects of Waste Effluents on the Plasticity of Earth Materials. Illinois Geol. Survey Environ. Geol. Note 23, 23 pp.Google Scholar
  34. Wu, T.H. 1966. Soil Mechanics. Allyn and Bacon, Boston, 429 pp.Google Scholar
  35. Yong, R.N., and B.P. Warkentin. 1975. Soil Properties and Behaviour. Elsevier Scientific Publ. Co., Amsterdam, 449 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Paul E. Potter
    • 1
  • J. Barry Maynard
    • 1
  • Wayne A. Pryor
    • 1
  1. 1.H.N. Fisk Laboratory of Sedimentology, Department of GeologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations