Skip to main content

Ramsey Theory

  • Chapter
Graph Theory

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 63))

  • 4658 Accesses

Abstract

Show that in a party of six people there is always a group of three who either all know each other or are all strangers to each other. This well known puzzle is a special case of a theorem proved by Ramsey in 1928. The theorem has many deep extensions which are important not only in graph theory and combinatorics but in set theory (logic) and analysis as well. In this chapter we prove the original theorems of Ramsey, indicate some variations and present some applications of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  • The fundamental Ramsey theorems are in F. P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. (2) 30 (1930) 264–286.

    Article  Google Scholar 

  • Theorems 4, 7 and 8 are due to V. Chvátal, P. Erdös and J. Spencer and can be found in S. A. Burr, Generalized Ramsey theory for graphs—a survey, in Graphs and Combinatorics (R. Bari and F. Harary, eds.) Springer-Verlag, 1974, pp. 52–75. For some of the deep results of Nešetřil and Rödl, one of which is Theorem 9,

    Chapter  Google Scholar 

  • see J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden subgraphs, J. Combinatorial Theory Ser. B, 20 (1976) 243–249, and Partitions of finite relational and set systems, J. Combinatorial Theory Ser. A 22 (1977) 289–312.

    Article  MathSciNet  MATH  Google Scholar 

  • The geometric Ramsey results of §3 can be found in P. Erdös, R. L. Graham, B. L. Rothschild, J. Spencer and E. G. Straus, Euclidean Ramsey theorems, I, J. Combinatorial Theory Ser. A, 14 (1973) 344–363.

    Google Scholar 

  • Theorem 15 is in A. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963) 222–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Rota’s conjecture is proved in R. L. Graham and B. L. Rothschild, Ramsey’s theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971) 257–292.

    MathSciNet  MATH  Google Scholar 

  • The results concerning Ramsey categories are given in R. L. Graham, K. Leeb and B. L. Rothschild, Ramsey’s theorem for a class of categories, Adv. in Math. 8 (1972) 417–433

    Article  MathSciNet  MATH  Google Scholar 

  • Errata, R. L. Graham, K. Leeb and B. L. Rothschild, Ramsey’s theorem for a class of categories, Adv. in Math. 10 (1973) 326–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Waerden’s theorem is in B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde 15 (1927) 212–216.

    Google Scholar 

  • The simple proof we give is from R. L. Graham and B. L. Rothschild, A short proof of van der Waerden’s theorem on arithmetic progressions, Proc. Amer. Math. Soc. 42 (1974) 385–386.

    MathSciNet  MATH  Google Scholar 

  • Rado’s theorem, mentioned at the end of §3 is from R. Rado, Studien zur Kombinatorik, Math. Zeitschrift 36 (1933) 424–480.

    Article  MathSciNet  MATH  Google Scholar 

  • The first results of §4 are in F. Galvin and K. Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973) 193–198;

    Article  MathSciNet  MATH  Google Scholar 

  • Glazer’s proof of Hindman’ theorem is in W. W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977) 417–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Exercise 5 is in R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7,

    Article  MathSciNet  MATH  Google Scholar 

  • Exercise 9 in a remark of F. Galvin and Schur’s theorem (Exercise 24) is in I. Schur, Über die Kongruenz x m + y mz m (mod p), Jahr. Deutsch. Math. Ver. 25 (1916)114–116.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bollobás, B. (1979). Ramsey Theory. In: Graph Theory. Graduate Texts in Mathematics, vol 63. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9967-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9967-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9969-1

  • Online ISBN: 978-1-4612-9967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics