Advertisement

Prime Factorization

  • Harvey Cohn
Part of the Universitext book series (UTX)

Abstract

We consider, as always, a number field k over ℚ generated by ξ εOk the domain of algebraic integers in k. Thus
$$ {\text{K = Q(}}\xi {\text{), }}\xi \varepsilon {O_{\text{k}}},{\text{ F}}\left( \xi \right) = 0. $$
(10.1)
$$ {\text{F}}\left( {\text{x}} \right) = {{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + \ldots + {{\text{a}}_{{\text{n - 1}}}}{\text{x + }}{{\text{a}}_{\text{n}}}, $$
(10.2)
for F(x) an irreducible polynomial of degree n over ℤ.

Keywords

Prime Ideal Prime Divisor Arithmetic Progression Residue Class Irreducible Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Harvey Cohn
    • 1
  1. 1.City CollegeCity University of New YorkNew YorkUSA

Personalised recommendations